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Abstract

Exercise is associated with increased ATP need and an enhanced aerobic and/or anaerobic metabolism, which results in an increased formation
of reactive oxygen species (ROS). Regular exercise seems to decrease the incidence of a wide range of ROS-associated diseases, including heart
disease, type II diabetes, rheumatic arthritis, Alzheimer and Parkinson diseases, and certain cancers. The preventive effect of regular exercise, at
least in part, is due to oxidative stress-induced adaptation. The oxidative challenge-related adaptive process of exercise is probably not just
dependent upon the generated level of ROS but primarily on the increase in antioxidant and housekeeping enzyme activities, which involves the
oxidative damage repair enzymes. Therefore, the effects of exercise resemble the characteristics of hormesis. In addition, it seems that the
oxidative challenge-related effects of exercise are systemic. Skeletal muscle, liver, and brain have very different metabolic rates and functions
during exercise, but the adaptive response is very similar: increased antioxidant/damage repair enzyme activity, lower oxidative damage, and
increased resistance to oxidative stress, due to the changes in redox homeostasis. Hence, it is highly possible that the well-known beneficial effects
of exercise are due to the capability of exercise to produce increased levels of ROS. Or in other words, it seems that the vulnerability of the body to
oxidative stress and diseases is significantly enhanced in a sedentary compared to a physically active lifestyle.
© 2007 Elsevier Inc. All rights reserved.
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Reactive oxygen species (ROS) are physiological products of
aerobic metabolism and are used by organisms for a variety of
tasks such as signaling, metabolizing of xenobiotics, initiating
apoptosis, and stimulation of antioxidant and repair processes
[1]. On the other hand, ROS are also believed to be involved in a

number of pathological processes such as cachexia, athero-
sclerosis, cancer, ischemia/reperfusion, inflammation, rheumatic
arthritis, and neurodegenerative diseases such as Alzheimer and
Parkinson diseases. The most accepted theory of aging also
incorporates the damaging effects of ROS that are considered
to be unavoidable by-products of aerobic metabolism [2,3].
Interestingly, certain conditions that result in low levels of
exposure to free radicals or free radical-generating systems,
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such as radiation, could lead to extension of the life span [4,5].
Caloric restriction, which is the only known method to extend
both mean and maximal life span, can be regarded as a mild
stressor [6].

Regular physical exercise, which has been proven to increase
mean life span, could also serve as a stimulating stressor.
Indeed, there is little doubt that the generation of ROS is
increased during exercise [7–10]. However, mounting epide-
miological data have proven that exercise decreases the
incidence of oxidative stress-associated diseases [11]. This
phenomenon is not a paradox; it is a result of exercise-induced
adaptation. The adaptation process involves activation of the
antioxidant system, interferes with the oxidative damage repair/
eliminating systems, and influences redox-sensitive transcrip-
tion, hence the gene expression and protein assembly. There-
fore, low levels of this ROS-induced adaptation process, evoked
by exercise, create a system that resembles hormesis. The
hormesis theory claims that biological systems respond in a
bell-shaped curve fashion to exposure to chemicals, toxins, and
radiation. In toxicology, hormesis is a dose –response pheno-
menon characterized by a low-dose stimulation and high-dose
inhibition, resulting in either a J-shaped or an inverted U-shaped
dose response: a nonmonotonic curve [12]. The stimulating
“toxin” during exercise is ROS formation, which evokes
specific adaptation, such as increased antioxidant/oxidative
damage-repairing enzyme activity, increased resistance to
oxidative stress, and lower levels of oxidative damage. This
specific adaptation seems to be systemic. Skeletal muscle, liver,
and brain react very differently to changes in oxygen supply
during exercise. However, the oxidative challenge-related
adaptive processes are very similar. The present review attempts
to provide a view of the exercise-induced systemic oxidative
challenge-related adaptation of skeletal muscle, liver, and brain.

Skeletal muscle

The resting energy expenditure for skeletal muscle is very
moderate and it is around 13 kcal/kg organ mass/day [13],
which, during heavy exercise, results in a large increase in
energy turnover (>100-fold) and introduces a major energetic
challenge with a massive oxygen flow to mitochondria [14].
Therefore, it is not surprising that mitochondrial generation of
ROS is significantly enhanced during exercise [7]. In addition to
mitochondria, NADPH oxidase is a potential generator of ROS
during exercise [15]. The increase in activation of glutathione
level, the activation of redox-sensitive transcription factors and
antioxidant enzymes, as well as the extent of oxidative damage,
clearly indicate the enhanced presence of oxidizing agents [15–
17]. Moreover, not only mitochondria, but other factors such as
xanthine oxidase (XO) could significantly contribute to the
oxidative stress, which targets skeletal muscle [18]. Exhaustive
exercise on the treadmill has been shown to result in significant
increases in lipid peroxidation of rats, and this was prevented by
superoxide dismutase derivatives, which protected the endothe-
lium [18]. A significant linear relationship was found between
the concentrations of lactic acid and XO in the blood, indicating
that anaerobic exercise-induced oxidative challenge could be

due to XO. The potential of a single bout of exercise to induce
ROS might be important because the inhibition of XO by
allopurinol negatively affected the exercise-induced adaptation
to oxidative stress [16]. Moreover, it has been shown that
contraction-produced ROS, up to a certain level, stimulate, and
above this level reduce, force production [19]. In addition,
muscle soreness-associated increases in nitric oxide levels could
be involved in a drop in maximal force production and con-
tractile protein damage induced by peroxynitrite, which has
been observed with muscle soreness [10]. Therefore, it seems
that the levels of ROS and NO modulate muscle function in a
“bell-shaped” manner, with low and high concentrations of
ROS and RNS causing decreases in function.

We and others have shown that the accumulation of reactive
carbonyl derivatives (RCD) occurs in a protein-selective
manner and actin, carbonic anhydrase III, and aconitase are
potentially sensitive to accumulating carbonyl moieties [19–
25]. Oxidative modification can serve as a tag, which marks the
degradation of proteins [26–29] by changing the hydrophobi-
city of the proteins [30,31]. Exercise can induce the activity of
the proteasome complex, which is significantly involved in the
degradation of oxidatively modified proteins [26–34].
Increased activity of proteasome could be an important factor
that affects the rate of protein turnover and the remodeling of
skeletal muscle after injury [35]. An increased rate of protein
turnover with exercise training [36–39] decreases the accumu-
lation of oxidative damage, hence beneficially affecting the
physiological function of proteins [40].The proteasome com-
plex plays a critical role in this process.

It seems that the activity of the proteasome complex can be
induced by hydrogen peroxide treatment in cell culture [41] and
in whole animal models as well [42]. Moreover, the combined
effects of exercise and hydrogen peroxide treatment result in
enhanced activity of the proteasome complex in myocardium of
rats [42].

Exercise training increases the resistance against oxidative
stress, providing enhanced protection [8,42,43].

The effects of exercise on the proteasome complex could
manipulate the regulation of the DNA repair process [44,45],
although the interaction of the proteasome system and DNA
repair has not been investigated in exercise studies. The data
from our laboratory indicate that exercise modulates the activity
of DNA repair enzymes in skeletal muscle [43,46].

It has been estimated that about 180 guanines are oxidized to
8-oxoguanosine by ROS daily in mammalian cells [47] and
these oxidized guanines are primarily recognized and removed
by oxoguanine DNA glycosylase (OGG1), while paired with
cytosine. We have shown that marathon running results in an
increased activity of OGG1, when measured from the crude cell
extracts of muscle biopsy samples of runners [46]. Aging was
found to be associated with increased accumulation of nuclear
8-hydroxydeoxyguanosine (8-OHdG) in quadriceps muscle of
rats and this was attenuated by exercise training, probably by
the induction of OGG1, as measured from crude cell extracts
[43]. Because the rates of oxidative damage in the nuclei and
mitochondria differ significantly [48], different levels of
activation of OGG1 are suggested in these organelles. Our
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recent data indicate that the regulation of OGG1 might be
different in nuclei and mitochondria, because exercise training
increases the activity of OGG1 in nuclei and decreases it in the
mitochondria [49]. We investigated whether these effects are
reversible, and we found that, indeed, exercise training
increases the OGG1 in nuclei and decreases the OGG1 in
mitochondria, and detraining reverses these changes (Z. Radak
et al., submitted for publication). Our limited knowledge and
data on the activity and regulation of OGG1 so far indicate that
exercise training regulates the activity of this enzyme in nuclei
and mitochondria of skeletal muscle differently, which could
have an impact on physiological function. On the other hand,
the activity of uracil DNA glycosylase (UDG), which removes
uracil in DNA created by deamination of cytosine, resulting in
mutagenic U:G mispairs and misincorporation of dUMP, seems
to be induced by exercise training in the nucleus and in the
mitochondria [49].

Increased activity of OGG1 and UDG in the nucleus could
provide enhanced protection and a decreased level of mutation,
which can be associated with the decreased incidence of cancer
observed in physically fit individuals [50].

Because the oxidative challenge-associated adaptive
response after exercise training is most significant in skeletal
muscle, it is not surprising that redox-sensitive transcription
factors are heavily involved in the adaptive response. The
DNA binding of NF-κB, AP-1, MAPK, and CREB is
increased by a single bout of exercise, whereas the training
process-induced adaptation might attenuate this binding
[16,17,51,52]. The regulation of these redox-sensitive tran-
scription factors by exercise is curricular for adaptive response
and cell survival.

Liver

Liver has a very high metabolic rate (200 kcal/kg organ
mass/day [21]), which is naturally associated with high oxygen
flux, but this is significantly decreased during exercise.

Unlike skeletal muscle, liver contains high levels of
xanthine dehydrogenase (XD) and during exercise XD is
converted to XO, generating ROS and, therefore, oxidative
damage [53]. The exercise and recovery period after exercise
in liver might be similar to the ischemia/reperfusion phenom-
enon, but this is unknown at this time. As a result of an
exercise-induced adaptation, ROS production is significantly
reduced in the liver of rats [54]. Moreover, the age-associated
increase in the activity of the redox-sensitive transcription
factor NF-κB can be significantly attenuated by regular
exercise [54]. NF-κB is involved in the regulation of various
cellular processes and one of the most well studied is the
transcription of inflammation-related proteins. It is well
accepted that aging increases the incidence of diseases
associated with inflammation [55,56], and the protecting
mechanism of exercise could be mediated partly through the
altered DNA binding of NF-κB.

The protection of DNA from oxidative damage is very
important for survival and although it has been shown that NF-
κB could be involved in DNA repair by affecting p53 [57], the

major role in oxidative DNA repair is that of base excision
enzymes. We have measured the 8-OHdG content in the liver of
middle-aged and old sedentary and old exercise-trained
animals. The 8-OHdG was increased significantly in mitochon-
dria and nuclei of aged animals compared to middle-aged
animals; moreover the mitochondrial 8-OHdG level was about
10 times higher than that of nuclei [58]. Regular exercise, on the
other hand, significantly reduced the age-associated increase in
8-OHdG content in both organelles and, possibly by this
mechanism, ultimately reduced the occurrence of mutation in
cellular DNA of both types of organelle. The decline in
8-OHdG was possibly due to the induction of OGG1 at the
nucleus. However, similar to skeletal muscle mitochondrial
OGG1, exercise training reduced the activity of mitochondrial
OGG1 in the liver [58]. This observation could mean that
nuclear and mitochondrial OGG1 are regulated differently as a
result of exercise training. Moreover, this thought would be in
accordance with our data, obtained from skeletal muscle, which
suggests that the regulation of the OGG1 in these organelles is
similar.

It is often stated, but poorly demonstrated, that exercise
training could have adverse effects related to ROS production
and accumulation of oxidative damage. Therefore, we designed
a study in which we trained animals with different exercise
loads, including overtraining [59]. The nuclear 8-OHdG content
increased in liver but not in skeletal muscle and brain,
suggesting that liver is one of the most sensitive targets of
exercise-induced oxidative stress among organs, although the
lipid peroxidation and RCD content remained significantly
unchanged [59]. The activity of OGG1, measured from crude
cell extract, increased in the liver in moderately and strenuously
trained animals, but not in the overtrained group.

Our observations suggest that the overall oxidative chal-
lenge-related adaptation in the liver of exercise-trained animals
might lead to a reduced rate of mutation in both nuclear and
mitochondrial DNA and attenuate the age-associated inflam-
mation process, hence increasing resistance to oxidative stress.

Brain

The resting energy expenditure for the brain is 240 kcal/kg
organ mass/day [21] and the oxygen flow is relatively constant
during exercise, and despite this relative stability of energy
metabolism and oxygen supply it seems that oxidative
challenge-associated adaptation occurs in the brain. In the
past decade it has become clear that regular exercise beneficially
affects brain function and could play an important preventive
and therapeutic role in oxidative stress-associated diseases
[60,61]. The effects of exercise seem to be very complex and
could include neurogenesis via neurotrophic factors, increased
capillarization, decreased oxidative damage, and increased
proteolytic degradation by proteasome and neprilysin [62–67].

Somani et al. [67] reported that the effects of exercise on the
activities of antioxidant enzymes were dependent on brain
region. In certain brain regions such as the stem and corpus
striatum, exercise training resulted in increased activities of
superoxide dismutase (SOD) and glutathione peroxidase (GPX)
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[68,69]. We have reported that a single bout of exercise, which
caused oxidative damage to skeletal muscle [18], liver, and
kidney [53], did not cause damage to the brain [70]. Further, the
activities of antioxidant enzymes (Cu,Zn-SOD, Mn-SOD,
catalase (CAT), GPX) were not significantly altered by an
exercise session. A similar phenomenon has been reported after
exercise training. Treadmill running did not alter the activities
of SOD, CAT, or GPX in the brain of rats. However, exercised
rats with diabetes have shown decreased Cu,Zn-SOD and GPX
activities [71].

The first study, which described a causative relationship
between the accumulation of oxidative damage to brain
proteins, RCD, and certain cognitive functions, was an age-
related study [72], and their results have been confirmed by
other laboratories [73]. Oxidative damage has been associated
with poor physiological function of the brain [72–74]. We have
also shown that regular exercise training attenuated the age-
related accumulation of RCD in the brain, increased the activity
of the proteasome complex, and improved brain function [75].
Chronic exercise training, using the rat model, did not cause
significant alteration of lipid peroxidation levels in the brain. On
the other hand, the supplementation of vitamin C elevated the
oxidative damage of lipids [76]. We have subjected rats to
moderate, very hard, and overtraining and found, even with
very hard training and overtraining, beneficial effects on brain
function and lowered accumulation of RCD [77]. The content of
8-OHdG was not significantly altered by the overtraining
protocol, and activity of OGG1 was also not changed in the
crude cell extract [77]. We recently evaluated the activity of the
DNA damage/repair enzyme of OGG1, in the nucleus and
mitochondria of trained and detrained rats, and did not detect
any significant alterations [78].

Brain-derived neurotrophic factor (BDNF) is one of the most
versatile, important neurotrophic factors in the brain. It plays a
curricular role in the learning process, including memory,
locomotion, behaviors, and a wide range of stress responses
[79,80]. It has been suggested that BDNF regulates brain
development, neuroplasticity, neurogenesis, neurite outgrowth,
synaptic plasticity, and cell survival [81,82]. The expression and
protein content of BDNF have been shown to be up-regulated
by exercise and oxidative stress [60]. We have measured ROS
levels by electron spin resonance and found that in some brain
regions, exercise training increases the levels of ROS, although
the level of oxidative damage does not increase ([78,83];
Z. Szabo, unpublished; S. Siamilis, unpublished), and a cor-
relation was found between ROS level and BDNF concentration
in the spinal cord (S. Siamilis et al., unpublished). In addition,
exercise results in angiogenesis in the brain by increasing the
level of vascular endothelial growth factor (VEGF) in the
hippocampus [84] and it seems that ROS are the mediators of
VEGF expression [85].

The activity of some redox-sensitive transcription factors
was investigated in exercise studies and the findings revealed
that CREB, synapsin, and MAPK activity increased in the brain
with exercise, and oxidative challenge alone also regulated
these [79,80], suggesting that exercise-induced changes in
redox homeostasis could be, at least in some part, mediated by

ROS. The observation that exercise training attenuates the
oxidative stress-related damage in brain is in accordance with
this statement [62,66,74,86].

Data relating to the effects of exercise on brain indicate that
accumulation of oxidative damage impairs brain function, and
exercise, under certain conditions, can attenuate the accumula-
tion of damage, causing improved brain function. Moreover,
ROS could play a role in the induction of neurotrophins, which
might be important for neurotrophin-caused neurogenesis.

Conclusion

The available data strongly indicate that regular exercise
plays a preventive role against lifestyle-dependent diseases and
the molecular mechanism behind this favorable effect could be
linked to redox homeostasis, a free radical-related adaptive
mechanism. The adaptive mechanism is initiated by transcription
factors, resulting in increased activities of the antioxidant
enzymes, and more effective repair and housekeeping by the
DNA repair enzymes and proteasome complex. The molecular
adaptation then leads to an improved physiological function and
enhanced resistance to oxidative stress. Most importantly, the
exercise-induced oxidative challenge-associated adaptation is
systemic. These beneficial consequences of regular exercise are in
sharp contrast to the effects of exhaustive exercise on unprepared
tissues that results in, apparently, harmful outcomes (Fig. 1).
These consequences of exercise fit well with the concept of
hormesis [87].

On the other hand, physical inactivity leads to impairment in
physiological functions and reduces the whole body resistance
to oxidative stress. Moreover, it seems that physical inactivity
through molecular pathways could facilitate the incidence of

Fig. 1. The redox homeostasis-associated changes as a result of single bout of
exercise and regular exercise compared to physical inactivity. Sedentary
lifestyle, of human beings or experimental animals, is often regarded as a
control, but this most probably should be considered as a nonphysiological,
physically inactive condition. One can consider that regular exercise is a normal
part of everyday life and it is phylogenetically conserved in evolution; hence
inactivity has very serious consequences, which are reflected in redox
homeostasis. The numbers represent selected references that support the
hypothesis. RONS, reactive oxygen and nitrogen species.
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oxidative stress-related diseases, such as cardiovascular dis-
eases, cachexia, atherosclerosis, cancer, ischemia/reperfusion,
inflammation, rheumatic arthritis, and neurodegenerative dis-
eases such as Alzheimer and Parkinson diseases. Therefore it
seems that the human being is not designed to be inactive for
survival.
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