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Exercise and hormesis: oxidative stress-related adaptation for successful aging
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Abstract

The hormesis theory purports that biological systems respond with a bell-shaped curve to exposure to
chemicals, toxins, and radiation. Here we extend the hormesis theory to include reactive oxygen species
(ROS). We further suggest that the beneficial effects of regular exercise are partly based on the ROS
generating capability of exercise, which is in the stimulation range of ROS production. Therefore, we
suggest that exercise-induced ROS production plays a role in the induction of antioxidants, DNA repair
and protein degrading enzymes, resulting in decreases in the incidence of oxidative stress-related diseases
and retardation of the aging process.

Introduction

In the past few years the hormesis theory has been
widely discussed and extended to various fields
(Sagan 1989, Minois 2001, Rattan 2001, 2004;
Calabrese and Baldwin 2003 a, b; Kaiser 2003;
LeBourg 2003). The observation that low doses of
toxins and/or radiation can exert beneficial effects
in lower organisms resulted in the development of
the hormesis theory (Stebbing 1982). Thus, the
term hormesis refers to the beneficial effects of low
doses of potentially harmful substances. Increasing
evidence suggests that hormesis may operate in
higher animals as well (Kaiser 2003; Calabrese and
Baldwin 2003b). Indeed, low doses of radiation
have been shown to increase lifespan in rodents
(Caratero et al. 1998) and low doses of certain
carcinogens can decrease the development of can-
cer (Niwa et al. 2002). The concept of hormesis
has been extended to the beneficial effects of
hypergravity on Drosophila melanogaster (Le
Bourg et al. 2003), moderate drinking of alcohol
(Calabrese and Baldwin 2003a) and caloric

restriction in experimental animals to prevent
disease and promote longevity (Sohal and
Weindruch 1996). The molecular mechanisms
regulating these benefits are largely unknown.

The basis for the hypothesis

Reactive oxygen species (ROS) are physiological
products of aerobic metabolism, and are used by
organisms for a variety of tasks such as signaling,
killing of infectious microorganisms, induction of
apoptosis, and stimulation of antioxidant and
repair processes (Pani et al. 2000). On the other
hand, ROS are also believed to be involved
in a number of pathological processes such
as atherosclerosis, cancer, ischemia/reperfusion,
inflammation, rheumatoid arthritis, cataract, and
neurodegenerative diseases, such as Alzheimer’s
(AD) and Parkinson’s. One of the most accepted
theories of aging (free radical theory) is also based
on the damaging effects of ROS that are consid-
ered to be unavoidable byproducts of aerobic
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metabolism (Harman 1956). Therefore the ques-
tion arises, why was a process that results in gen-
eration of these byproducts and causes so many
problems, selected during the course of evolution?
The typical reaction to ROS can be described by

a bell-shaped curve: low concentrations have a
stimulating effect (signaling, receptor stimulation,
enzymatic stimulation), while a massive level of
ROS inhibits enzyme activity and causes apoptosis
or necrosis. Skeletal muscle function is a good
example, since hydrogen peroxide at a low con-
centration increases Ca++ release from the sarco-
plasmic reticulum and force production, whereas a
massive increase in hydrogen peroxide concentra-
tion results in a sharp decrease in force output
(Andrade et al. 2001). When skeletal muscle bun-
dles were incubated with exogenous catalase, force
production decreased in a dose dependent manner
and exogenous hydrogen peroxide resulted in a
gain in force generation (Reid et al. 1993). Hence,
the effect of hydrogen peroxide and perhaps some
other oxygen species, seems to be hormetic.
Indeed, the pre-conditioning of myocardium

by a mild oxidative stress has been repeatedly
shown to increase the resistance of the heart
against massive oxidative challenge and to have
a beneficial effect on physiological function
during and after significant oxidative stress (Sun
et al. 1996).

Hypothesis

We intend to extend the hormesis theory to the
ROS generating effects of exercise. It has been
clearly shown that a single bout of exercise above a
certain intensity or duration results in increased
production of ROS and causes oxidative damage
to lipids, proteins, and DNA (Davies et al. 1982,
Radak et al. 1999b, McArdle et al. 2004). On
the other hand, it is also well established that
regular exercise is a preventive measure against
oxidative stress- related diseases including cardio-
vascular diseases, stroke, and certain cancers
(Hamilton et al. 2003; Hawkins et al. 2003; Wan-
namethee et al. 1998). We propose here, that this
paradoxical effect is due to the ability of exercise to
increase of the formation of ROS to a level that
may induce significant, but tolerable, damage that
can in turn induce beneficial adaptations, in

keeping with the theory of hormesis. We have no
doubt that a single bout of exercise increases the
generation of ROS, or that ROS play pathophys-
iological roles in aging, cardiovascular disease,
cancer, AD, for example. We do, however, suggest
that a low level of ROS or transient increases in
ROS could prevent diseases associated with oxi-
dative stress and retard the aging process. Thus,
we propose here, that the molecular basis for the
preventive effect of regular exercise is due, in part,
to intermittent, brief increases in formation of
ROS, thereby altering signaling pathways and/or
causing molecular damage that can induce adap-
tive responses that protect against a subsequent
stronger stress. In other words, exercise-induced
increases in production of ROS may protect
against ROS associated diseases. This hypothesis
is in accordance with the hormesis theory.

Support for the hypothesis

The oxidative cellular milieu created by exercise
activates signal transduction pathways that result
in enhancement of endogenous antioxidant sys-
tems. Many studies have demonstrated that regu-
lar exercise up-regulates the antioxidant system
(McArdle and Jackson 2000). Moreover, it also
appears that exercise is able to stimulate the oxi-
dative damage repair system (Radak et al. 1999,
2001, 2002, 2003; Sato et al. 2003; Wittwer et al.
2004). It has been reported that regular exercise
increases the activity of the proteasome complex,
which is believed to be responsible for the degra-
dation of oxidatively modified proteins (Radak
et al. 1999b, 2002). The proteasome complex has a
very important role, namely reduction of oxida-
tively modified proteins, leading to better and
more efficient cell function by a more rapid
turnover of proteins (Goto et al. 2001). Faster
turnover would not result in just a reduced post-
translational period, thus decreasing the chance
for oxidative damage, but would also provide a
mechanism for damaged proteins to be replaced by
intact ones with more efficacious physiological
functions (Verbeke et al. 2001, Beedholm et al.
2004). Available evidence suggests that exercise
has a preventive role in AD, which might be
mediated not just by up-regulated neurotrophins,
but also by an increased proteasome activity
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(Radak et al. 2001; Mattson et al. 2002) since
decreased degradation of b-amyloid peptide has
been suggested to be one of the causative factors of
AD. Slower b-amyloid degradation is thought to
result in increased production of a long form of
amyloid b-peptide which self-aggregates and forms
insoluble plaques in the brain, resulting in in-
creased ROS production and oxidative damage
(Mattson et al. 2002).
Interestingly, the activity of the proteasome

complex also responds with a bell-shaped curve
to the exposure to hydrogen peroxide, suggesting
that the proteasome itself is subject to hormesis
when exposed to mild oxidative stress (Sitte et al.
1998).
In addition to an increase in damaged protein

degrading systems, the activities of DNA dam-
age- repairing enzymes are also up-regulated by
regular exercise (Radak et al. 1999, 2001, 2002,
2003; Sato et al. 2003; Wittwer et al. 2004). The
repair process of DNA damage is one of the
most important means for survival and vitality
of cells (Gilchrest and Bohr 1997). It has
been shown in human and animal studies that
exercise increases the activity of 8-oxoG DNA
glycosylase (hOGG1) (Radak et al. 2002, 2003).
Moreover, the level of 8-hydroxydeoxyguano-
sine (8-OHdG) was lower in leukocytes of reg-
ularly exercising humans than in sedentary
controls, and the mRNA transcript of the DNA
repair enzyme was increased after an exercise
bout, indicating that the effect is due to tran-
scriptional stimulation or stabilization of the
mRNA (Sato et al. 2003). In addition, the recent
observation that the expression of DNA repair-
ing genes is up-regulated by endurance training
is in accordance with our hypothesis (Wittwer
et al. 2004). The finding that caloric restriction,
which appears to be the only known method to
increase maximal life-span in rodents, decreases
the expression of DNA repair genes, may be the
result of reduced oxidative stress and related
damage (Lee et al. 1999). Therefore, the accu-
mulation of oxidative damage can be decreased
either by lowering the generation of ROS (calo-
ric restriction) or by regular exposure to a small
amount of ROS (such as mild exercise) that
could result in slight oxidative damage, which
then leads to up-regulation of repair and anti-
oxidant systems. The damage-induced adaptation

theory is not without precedent in exercise
physiology (Evans and Cannon 1991).
It is important to emphasize that exercise is not

just work or entertainment, but has important
physiological implications including improving
brain and cardiovascular functions and reducing
the incidence of certain cancers and a number of
other diseases. Beneficial changes induced by
regular exercise may be most prominent in older
people (Wannamethee et al. 1998). In addition,
moderate oxidative stress, induced by exercise,
might up-regulate anti-inflammatory processes
and result in modulation of related transcription
factors such as NF-kB and AP-1 (Radak et al.
2004). In addition, it appears that single bout of
exercise increases the level of tumor necrosis
factor-alpha (TNF-a) (Cannon et al. 2001) and
resistance exercise training decreases the expres-
sion of (TNF-a) in aged skeletal muscle (Greiwe
et al. 2001). Hence, it is suggested that decreased
(TNF-a) expression in aged skeletal muscle can
significantly attenuate the age-associated muscle
wasting. Therefore, regular exercise may not only
retard the age-associated decline in muscle and
bone mass, but, through ROS production, also
beneficially affect and retard biological aging.
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