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1. Introduction 

1.1. Aging process and its consequences  

 Aging is an undeniable and complicated biological process that is indicated by a general 

time-dependent decline in the physiological and biochemical functions of the main systems 

[1, 2]. Aging is also a remarkable risk factor for the advancement of cardiovascular diseases 

[3] and is associated with a significant decline in neuromuscular function and performance 

[4]. The percentage of elderly people in the world is increasing steadily (Figure 1) [5] due to 

the impressive rise in average life expectancy in the past century [6].  

The rapid increase world’s aging population has led to concerns about the general health of 

elderly [7]. It is estimated that until year 2050, the elderly population will increase from 600 

million as it was in the year 2000 to more than two billion (Figure 2) [8].  Several changes are 

observable along with aging, including a reduced capacity oxygen consumption, an 

impairment in cardiorespiratory adaptation and degradation of the nervous system, and 

decadence in muscle mass which characterized by a reduction in muscle mass and by a 

qualitative and quantitative alteration in muscle fibers [2]. After age 30, a change in body 

composition occurs. However, a reduction of about 0.23 kg muscle mass per year is expected 

from ages of 30 to 60 which accelerates to 2% annually from the age of 60 [9]. Indeed, data 

from the most recent longitudinal aging study suggest that muscle strength decreases at an 

intermittent rate of ~ 3% yearly between the ages of 70–79 years [10]. 

 

Figure 1. Percentage change in the world’s population by age: 2010-2050 [1] 
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Due to increasing longevity and the fact that the elderly have twice as many disabilities and 

four times as many physical limitations as people less than 60 years of age [11], it is 

imperative to understand the aging process and the mechanisms associated with healthy aging 

and conservation of functional independence at the end of life [12].  

 

1.2. Sarcopenia phenomenon as a natural consequence of the aging process  

  

1.2.1. Definition    

 

One of the most well-known features of aging is a change in body composition and decline in 

lean body mass [13]. Age related skeletal muscle wasting, also called sarcopenia, plays a 

significant role in reducing performance [14]. The contribution of lean muscle mass in whole 

body weight is approximately ~50% in young adults, which declines to 25% after age of 75 

years. The reduction of muscle mass is generally counteracted by gains in fat mass. The 

lower extremity muscle groups are more at risk for losing muscle mass, with to 40% 

reduction in cross-sectional area (CSA) of the vastus lateralis between the age of 20 and 80 

years [14]. Although sarcopenia has been widely recognized, however, its mechanisms 

remain poorly known and have not received proper attention until quite recently [13]. In the 

recent decades, research on sarcopenia and muscle wasting have grown considerably    

(Figure 3). The term sarcopenia has been derived from Greek sarx (flesh) and penia (loss), 

Figure 2. Young children and older people as a percentage of global population: 1950-2050 [1] 
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letter by letter meaning deficiency of flesh [15, 16]. It has been suggested that up to 40% of 

muscle mass may be lost between the ages of 20 and 70 years. A reduction in skeletal muscle 

mass can start in the early 35 years of age and may speed up to 6% per decade after 30 year 

of age and 1.4% to 2.5% per year after age 60 [16]. 

 Assessed on 13 January 2015 from www.pubmed.gov 

In parallel, leg strength is declined by 10–15 % per decade until 70 years of age, and then by 

25–40 % per decade [17]. Fast twitch fiber are more affected and their size may be reduced 

by 20-50%, despite the fact that slow twitch fibers are less affected, they may be still have a 

reduction by 1-25% in size. The decrement in total muscle mass is more than loss of muscle 

fiber size because of an extra loss of fibers [18]. For example, a 40–45% reduction in CSA of 

the type II muscle fibers was observed in older males compared to young subjects [19].  

Using the difference definitions of sarcopenia makes it inconceivable to compare studies for 

understanding the pathophysiological processes and developing the targeted therapies [20].  

There are no clear clinical outcome parameter for sarcopenia yet and the evaluation of muscle 

quality based on physical performance and strength is undesirable, because other parameters 

such as the neural controller, cardiovascular fitness and joint function are also involved in 

physical performance and strength. Despite the correlation between the amount of muscle 

mass and muscle strength, it has been demonstrated that muscle mass and muscle strength are 

two different entities and therefore the loss of muscle strength occurring with age can be 

described by the term ‘dynapenia’ [20].  

Figure 3. Number of PubMed entries retrieved after entering the search term “muscle wasting 

OR sarcopenia” 
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In 2009, The International Working Group on Sarcopenia (IWGS) provided an operational 

definition for sarcopenia. This definition includes people with functional decline, movement-

related problems, history of repeated falls, recent inadvertent body weight loss, post 

hospitalization, and chronic conditions (such as type 2 diabetes, chronic heart failure, chronic 

obstructive pulmonary disease, chronic kidney disease, rheumatoid arthritis, and cancer), and 

was more suitable in clinical settings [16]. On the other side, in 2010 the European Working 

Group on Sarcopenia (EWGSOP) developed a new definition for sarcopenia [21]. EWGSOP 

recommendations cover both low muscle mass and low muscle function for assessment of 

sarcopenia in clinical and research tests. EWGSOP offers three levels for sarcopenia 

including: The pre-sarcopenia level is specified by low muscle mass but no change in muscle 

strength or performance. The second level of sarcopenia, is specified by low muscle mass 

along with low muscle performance and the third level, known as severe sarcopenia, is 

characterized by decrease of all of three components, muscle mass, strength, and performance 

[8].  A formula has been used for assessment of sarcopenia as appendicular lean mass (sum of 

lean mass of both arms and legs) divided by height squared. Values higher than two standard 

deviations below the mean of a young reference population were categorized as sarcopenia 

[20]. The first step in the management of sarcopenia is to diagnose the condition. 

Unfortunately, at the moment, there is no standard diagnostic criteria for detection low 

sarcopenia [22]. The most commonly used measurement techniques for muscle mass and 

body composition are Dual-energy X-ray absorptiometry (DXA), magnetic resonance 

imaging (MRI), computed tomography (CT) and electrical impedance myography (EIM) [15, 

22, 23].  

Due to practical problems in evaluating muscle mass, it is not easy to estimate the prevalence 

of sarcopenia. Many different methodologies have been used over the last 20 years, and new 

techniques are still being introduced. On average, it is estimated that 5–13 % of elderly 

people aged 60–70 years are impressed by sarcopenia, and the numbers raise to 11–50 % for 

those aged 80 or above [15]. In line with these data, other sources estimate the prevalence of 

sarcopenia in the range from 13% to 24% in adults over 60 years of age to more than 50% in 

persons aged 80 and older [24]. Current estimates suggest that ~200 million people 

worldwide will be affected by sarcopenia by the year 2050 [25]. Women show a higher 

decrease of muscle mass, especially after menopause. The reduction of muscle mass in aged 

people does not affect arms and legs the same way. Muscle wasting is higher in the lower 

limbs irrespective of the sex of the person. However, when Performance parameters, such as 
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muscle quality, are considered, it can be found a sex-dependent differences. Men undergo a 

greater loss in the upper limbs Compared to women whereas no differences in the decline of 

muscle mass in lower limbs have been observed [26].  

   

1.2.2. Consequences  

 

Sarcopenia is, therefore, a multifactorial consequence of aging and indicative a potent risk 

factor for the development of negative health-related conditions in the elderly [2]. 

Additionally, mobility disturbances resulting from muscle wasting is along with decreased 

quality of life and increased social and health care costs in elderly [27]. Sarcopenia is also 

related to acute and chronic disease states, increased insulin resistance, fatigue, falls, and 

mortality. Of the chronic disease states, sarcopenia has been especially associated with 

rheumatologic conditions, especially rheumatoid arthritis in women [28]. In addition, 

sarcopenia is a main risk factor of falls and disability among the elderly people. Dysfunction 

and physical inability in sarcopenic people are 2 to 3 times more likely [8]. Individuals with 

clinically sensible sarcopenia have 4 times higher risk of disability, three times more risk of 

balance impairment, and 3 times greater risk of falling. Therefore, sarcopenia is the single 

most prevalent etiology to falls and fall-related fractures in elderly people [13]. It has been 

estimated that direct healthcare costs related to sarcopenia in the United States of America in 

2000 were $18.5 billion, which was around 1.5% of total healthcare expenses for that year 

[29]. It is estimated that a 10.5% reduction of the outbreak of sarcopenia could lead to a 

reduction of healthcare expenses by 1.1 billion US dollars per year in the United States [20]. 

 

1.2.3. Etiology of sarcopenia   
 

Although the exact mechanisms involved in sarcopenia is still unclear, however, several 

factors have been proposed to be involved in the onset and progression of sarcopenia (Figure 

4). Sarcopenia arises from several physiopathological factors including, but not limited to: 

sedentary lifestyle [9, 14, 30, 31],  chronic inflammation [13, 17, 30, 32], impaired satellite 

cell function [12, 27, 31, 32], malnutrition [9, 12, 13, 30, 32], declines in neural function [12, 

13, 18, 32, 33], hormonal changes [12, 18, 30, 34], mitochondrial dysfunction [18, 34]. It is 

also probable that certain underlying mechanisms are of greater influence than others when 

considering any specific age group, gender, or association with comorbid states [4]. 
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1.2.3.1. Sedentary life style    

 

Physical activity has been defined as any action generated by the contractive activity of 

skeletal muscles that increments energy expenditure. Physical activity is including of daily 

routines like standing up from a chair and taking stairs, as well as Voluntary movements for 

health benefits such as walking or biking. Inactive persons are characterized by doing only 

basic physical activities such as standing, walking slowly and lifting light objects. Lifestyle 

styles related to nutrition, physical activity, exercise, alcohol consumption, and smoking have 

a Significant influence on the advancement of sarcopenia and the ability to prevent and treat 

the loss of muscle mass and function in old age [9]. 

 

 

Figure 4. Schematic model of main factors involved in the onset and progression of the 

sarcopenia and its consequences 

 

One of the main factor involved in sarcopenia is reduced physical activity among older 

people [35]. It has been suggested that at least some of the increasing prevalence of 

sarcopenia after the age of 65 is due to decrease physical activity and smoking [36]. 
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The connection between lean body mass and degree of physical activity and exercise are 

complex. Reduction in physical activity can alter body composition in some ways. One study 

studied relation between body composition and physical activity in older women over a 10 

years period and found that grater levels of physical activity reduced the advancement of 

sarcopenia. The level of muscle loss is increased even greater when an older person has to 

spending a period of bed rest because of illness [37]. In addition, inactive and smoker persons 

had a greater risk for a reduction in health status compared with active and non-smoker 

people. The net impact of a healthier lifestyle on the process of healthy aging is likely going 

together with a compressed cumulative morbidity [38].  

 

1.2.3.2. Chronic inflammation 

 

An age-related disruption in the intracellular redox balance plays an important role in 

generating a chronic state of low-grade inflammation. Chronic cellular inflammation is 

intended for fundamental mechanism of aging and age-related diseases, and it may consider 

as a link between normal aging and age-related pathological processes [39]. There are several 

lines of evidence suggestting that the inflammation being associated with loss of muscle 

strength and mass with aging [40]. Number of studies have implicated increased levels of two 

pro-inflammatory cytokines, Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), in 

the development of sarcopenia [41-44]. For example, it was observed a 2.8 fold increase in 

TNF-α expression in skeletal muscle of aged male compared to young male subjects [45].  

An increased expression of TNF-α has also been reported in soleus and vastus lateralis of 

aged rats relative to young rats. Furthermore, it has been found that old animals have 

significantly higher plasma TNF-α levels than younger controls with corresponding 

elevations of IL-6 [45]. Animal studies have shown that the supplementation of IL-6 or TNF-

α increases skeletal muscle breakdown, reduces the rate of protein synthesis, and decreases 

plasma concentrations of insulin-like growth factor 1 (IGF-1). The activation of the age 

related inflammatory process is thought to be the consequent of an up regulation of the 

transcription factor nuclear factor be (NF-кB), an important regulator of the innate immune 

response. This fundamental and increased activity of NF-кB that is associated with aging has 

been suggested to be one of the basic causes of sarcopenia [41].  Furthermore, reactive 

oxygen species (ROS) also seems to act as second messengers for TNF-α in skeletal muscle, 

activating NF-кB either directly or indirectly [39]. TNF-α is also linked to sarcopenia because 
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this pro-inflammatory cytokine is known to be associated with other factors that contribute to 

sarcopenia including protein degradation, ROS accumulation and apoptosis. In addition, 

TNF-α may be induced sarcopenia by promoting insulin resistance, impaired muscle repair, 

and amplifying the pro-inflammatory response by up-regulating IL-6 [45]. Notably, pro-

inflammatory cytokines, in particular TNF-α, are potent stimulators of muscle proteolysis 

through activation of ubiquitin-proteasomal system (UPS). This pathway is thought to be 

responsible for the major part of muscle proteolysis and is stimulated by the repeated 

covalent binding of 76-amino acid ubiquitin monomers to proteins targeted for degradation 

[46]. Furthermore, there is evidence that due to hormone-cytokine receptor cross-talk, pro-

inflammatory cytokines like TNF-α that cause muscle wasting may also operate by 

interfering directly with somatotrophic receptors, including insulin-like growth factor 1 (IGF-

1) [47].  

 

1.2.3.3. Mitochondrial dysfunction 
 

Mitochondria are subcellular self-autonomous organelles primarily responsible for the 

generation of energy and adenosine three phosphate (ATP) synthesis. Besides this, 

mitochondria has a significant role in amino acid and lipid metabolism and regulation of 

apoptosis [48]. There are a number of evidence supporting the hypothesis that mitochondrial 

function and biogenesis appear to be altered in skeletal muscles of older adults [28, 49-51], 

which in turn may contribute to altered skeletal muscle mass and function [28]. Alterations in 

mitochondria have been considered in aging, such as reduced total volume, elevated oxidative 

damage, and decreased oxidative capacity. These alternations may resulted in not only a loss 

of muscle mass and function with age, but other diseases associated with aging such as 

ectopic lipid infiltration, systemic inflammation, and insulin resistance [52]. It is well 

established that the amount of synthesis of mitochondrial, myosin heavy chain (a key 

contractile protein) and mixed muscle protein are decreased with age, along with oxidative 

capacity of skeletal muscle [53]. Muscle biopsy samples have determined that certain 

measures of mitochondrial content decrease with age as measured by electron microscopy, 

mitochondrial deoxyribonucleic acid (mtDNA) copy number, proteomics or the activities of 

key tricarboxylic acid (TCA) cycle enzymes such as citrate synthase [53]. Several hypotheses 

have been proposed to explain the decline in mitochondrial function with aging. These 

theories are included increased ROS production, chronic inflammation and/or mtDNA 
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damage [54]. According to the widely-accepted mitochondrial free radical theory of aging, 

mitochondrial dysfunction arising from oxidative damage to mtDNA is the central 

mechanism driving the aging process [55]. Mitochondria have their own DNA (mtDNA); 

however, its role in mitochondrial protein encoding is only 1% of the approximately 1,000. 

The bulk of the mitochondrial proteins are encoded by nuclear DNA and are transported to 

mitochondria from the cytoplasm [48]. The mtDNA is especially unprotected to oxidative 

damage because of its proximity to the electron transport chain (ETC) (the main cellular 

source of oxidants) and the lack of protective histones. Moreover, because of the density of 

mitochondrial genome (i.e., lack of intrones), each mutation is likely to affect gene integrity 

[27]. A defeat of replication of mtDNA may be the reason of a significant deletion in the 

mitochondrial genome; the shorter genome is replicated faster by inducing the formation of 

dysfunction or completely inactive mitochondria [2]. The relevance of mtDNA damage to 

sarcopenia is evidenced by reduced activity of complex I and IV of the ETC reported in aged 

skeletal muscles of various species. It should be noted that high levels of mtDNA deletions 

and ETC abnormalities in fibers often result in morphological distortions, including 

segmental atrophy, fiber splitting, and breakage [27]. Another important aspect to be 

considered is the motility of mitochondria which continuously undergo fusion (mitofusion) 

and fission (mitofission) events that actively alter their morphology [2]. The role of 

mitofusion and mitofission in aging human skeletal muscle still not fully understood, but are 

believed to be to be key components in regulating mitochondrial quality and function. By 

enhancing mitochondrial protein turnover, fusion and fission help the maintenance of 

mitochondrial and skeletal muscle health by avoiding the accumulation of protein damage 

that can evoke the stimulation of apoptotic and catabolic pathways. In order to remove 

damaged parts of mitochondria by exchanging and dilution, two mitochondrial membranes of 

separate mitochondria connect to each other by mitofusion process, whereas mitofission 

separates high damaged parts of mitochondria for removal by mitochondrial specific 

autophagy [56].  

 

1.2.3.4. Hormonal changes 

  

In humans, several hormonal systems appear a gradual reduction in activity during aging, as 

defined by their bioactive hormone concentrations [44]. Several studies have demonstrated 

age-related endocrine declines such as decreases in testosterone, estrogen, growth hormone 
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(GH) and IGF-1 [22, 40, 57, 58]. In addition to the well-documented decline in these anabolic 

hormones, other endocrine systems (including circulating levels of catecholamines) and 

paracrine/autocrine systems (including local IGF-1 production) may play an important role in 

sarcopenia [44]. These pathways also offer important potential opportunities for interventions 

[28]. We will discuss them in more detail in the following. 

 

1.2.3.4.1. Growth hormone 

 

Several hormones have been suggested for having effects on muscle mass, strength and 

function. Among them, GH has been one of the most studied [59]. GH is a single-chain 

peptide of 191 amino acids. The somatotrophs of the anterior pituitary gland are responsible 

for GH production and secretion. GH secretes in a pulsatory manner with a major boost at the 

onset of slow-wave sleep and less discernible secretory episodes a few hours after meals. GH 

production is controlled by the action of two hypothalamic factors, GH releasing hormone 

(GHRH), which stimulates and somatostatin, which inhibits GH secretion. During fasting, 

GH secretion is increased, whereas excess of glucose and lipids inhibits GH release [60]. The 

functions of GH are mediated through the growth hormone receptor protein (GHR), which 

subsequently activates the Janus kinase 2 (JAK2) signal transducer and activator of 

transcription pathway [44]. The main functions of GH are to increase the synthesis and 

releasing of systemic IGF-1 to stimulate local IGF-1 production in skeletal muscle [34]. IGF-

1 derived from circulation and/or tissue then stimulates amino acid uptake and the synthesis 

of nucleic acids and proteins. In addition, GH reduces lipogenesis and promotes lipolysis 

[61]. However, GH also has a number of IGF-1 independent actions. GH can affects other 

cellular processes in skeletal muscle, which may be important during aging. For example, GH 

acutely regulates muscle mitochondrial function by increasing the transcript levels of several 

key mitochondrial proteins and shifting fuel utilization toward increased fat oxidation [44]. 

The secretion of GH is maximal at puberty accompanied by very high circulating IGF1 

levels, with a gradual decline during adulthood [60]. The circulating (blood-borne) levels of 

GH declines progressively after ~30 years of age at an average rate greater than 1% per 

annum [44]. Indeed, in aged men, daily GH secretion is 5- to 20-fold lower than that in young 

adults [60]. It is therefore not surprising that the age-related decline in GH was believed 

initially to be indirectly responsible for age-related changes in skeletal muscle via IGF-1 [44]. 
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1.2.3.4.2. Insulin and insulin-like growth factors 

 

Several studies have been suggested that IGF-1 is an imperative modulator of muscle mass, 

strength and function, not only during development, but also across the entire life span [34]. 

Much of the anabolic effects of GH is mediated via IGF-1 [19]. Skeletal muscle contains a 

population of heterotetrameric transmembrane receptors that bind insulin, IGF-1 and/or IGF-

II to regulate various stages of myogenesis, including proliferation, differentiation and fusion 

of muscle precursor cell [44]. In addition to the mature IGF-1 produced by the liver, skeletal 

muscle is an important source of this hormone. Studies have demonstrated there are at least 

two different types of IGF-1 which produced by skeletal muscle. They are derived from the 

IGF-1 gene by alternative splicing. One of the splice variants is expressed in response to 

mechanical stress like physical activity and is called ‘mechano growth factor’ or MGF and 

the other is similar to the systemic or liver type (IGF-1Ea) important for providing the mature 

IGF-1 required to up-regulate protein synthesis [44]. There are six forms of insulin-like 

growth factor-binding proteins (IGFBPs) and IGFBP-3, -4, -5 and -6 are found in skeletal 

muscle. Overexpression of any of these IGFBP isoforms suppresses IGF-1 function by 

inhibiting its binding to IGF-1R  [62]. The mammalian target of rapamycin (mTOR) 

signaling pathway is important for translation initiation and is therefore critical for muscle 

protein synthesis. One mechanism that activates mTOR signaling is the IGF-1/PI3k/Akt 

pathway [45]. In general, tissue responsiveness to IGF1 is altered with aging. Aging is 

associated with reductions in IGF1R content and phosphorylation in skeletal muscle [60]. 

Cross-sectional studies have been shown, circulating levels of IGF-1 decrease with age in 

both men and women, as well as in rodents [63]. In the older compared to the young males 

subjects, GHR and IGF-1 messenger RNA (mRNA) were reduced by 45% [19]. In addition, 

muscle production of MGF is decreased in old rats in response to mechanical overload. 

Furthermore, both the density and affinity of the IGF type 1 receptor are reduced in the aged 

muscle [31]. Taken together, aging-related decline in IGF-1/Akt/mTOR signaling seems to 

significantly contribute to sarcopenia. 
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1.2.3.4.3. Testosterone and its precursors 

 

During normal aging, the most notable and well characterized change in hormonal systems is 

the decrease in sex hormone production [64]. There is evidence that sex hormones such as 

testosterone, estrogens, and dehydroepiandrosterones (DHEAS), play an important role in the 

age-related onset of sarcopenia [58]. The available data suggest that low sex hormone 

concentrations are among the key mechanisms for sarcopenia and age-induced reduction in 

muscle strength and power. However, the underlying biological mechanisms by which age-

induced sex hormone deprivation affects muscle mass and function are largely unknown [64]. 

It has been demonstrated that androgens, such as testosterone, regulate muscle mass in 

humans. Testosterone is secreted primarily by testicular Leydig cells in males and ovarian 

thecal cells in females, and directly binds to androgen receptors in skeletal muscle, resulting 

in transformation and dimerization of the receptor, followed by nuclear localization and 

subsequent DNA binding [44]. Sex steroids are found circulating in the bloodstream in three 

forms. The majority (~70 %) is strongly bound to sex hormone-binding globulin, with ~20 % 

bound to albumin and only 2–3 % circulating freely. The free and albumin-bound forms are 

considered biologically available components. Estradiol is produced from testosterone by the 

actions of aromatizing enzyme cytochrome P450 19A1. The effects of estradiol on gene 

expression are delivered through nuclear receptors (ESR1 and ESR2) [64]. Another hormone 

associated with muscle mass loss is DHEA, a pro-hormone that can transform into sex 

steroids, such as androgens and estrogens. DHEA plays important roles in the human body 

including increase in muscle mass, improvements in glucose and insulin levels, decline in fat 

mass and the reduction of breast cancer risk [65]. DHEAS may affect muscle function. In 

fact, skeletal muscle is capable to stimulate IGF-1 by converting DHEA into active androgens 

and estrogens and to stimulate IGF-1 which is important in muscle growth and recovery [58]. 

With aging, free testosterone levels are decreased in men and this decline parallels the 

decrease in muscle mass and strength [65]. Aging is associated with low testosterone which 

may lead to decreased muscle mass and bone strength, and thereby to more fractures and 

complications. Testosterone has proven effects to increase muscle mass and muscle function, 

but along with these benefits, there are also problematic side effects [57]. In males, levels of 

testosterone decrease by 1% per year, and those of bioavailable testosterone by 2% per year 

from age 30. In women, testosterone levels drop rapidly from 20 to 45 years of age [40]. A 

substantial number of older men are hypo gonadal. Hypogonadism has been defined as a total 

testosterone concentration of <9.26 nmol/L (2 SD below the mean for healthy young men). 
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As a result, approximately 20% of men >60 years and 50% men >80 years are categorized as 

hypogonadal [22]. In men, age-related decrease in serum testosterone levels has been linked 

with loss of skeletal muscle mass, strength, and physical performance [66]. However, it 

seems that the influence of sex hormones to maintain muscle mass and strength is greater in 

men than in older women [67]. Circulating levels of DHEA decline with age, especially at 

menopause in women. This decrease in DHEA has been shown to be associated with a 

decline in muscle mass and physical function [65]. It is suggested that the age-related decline 

in estrogen and testosterone are related to increases in levels of the pro-inflammatory 

cytokines IL-6 and TNF-α, which may promote the loss of muscle mass during sarcopenia 

[45]. 

 

1.2.3.4.4. Menopause 

 

Menopause is defined as the permanent cessation of menstruation due to loss of ovarian 

follicular activity and is a sign of the end of a normal female fertility. Menopause is begun by 

a period of menstrual cycle irregularity, known as the menopause transition or peri-

menopause, which usually begins in the mid-40s. The menopause transition is characterized 

by many hormonal changes that lead to a dramatic reduction in the ovarian follicle numbers. 

A remarkable reduction in inhibin B seems to be the first endocrine marker of the menopause 

transition with follicle-stimulating hormone (FSH) levels being marginally raised. Significant 

decline in estrogen and inhibin with marked increases in FSH occur only at the late stage of 

menopause transition. At the time of menopause, FSH levels elevate to 50% of final post-

menopausal concentrations while estrogens levels have reduced to about 50% of the 

premenopausal concentrations [65]. The decreases in estradiol and estrone concentrations 

occur much faster, within a six month period around the menopause. The changes are more 

dramatic in estradiol. Both estradiol and estrone levels continue to decrease further during the 

first three postmenopausal years. The postmenopausal status is characterized by the presence 

of a very low constant systemic estradiol level. This is in contrast to the cyclic estradiol 

production during premenopause. Circulating estrone, synthesized from the adrenal steroids 

in peripheral tissue, becomes the most abundant estrogen in the circulation [64]. There is a 

correlation between menopause due to decreased estrogen levels and sarcopenia in women. A 

reduction of estrogen can be resulted in body composition changes, including a loss of 

muscle mass, but an increase in adipose tissue as well as a redistribution of body fat to the 
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visceral region. It was suggested that estrogen may reduce fat accumulation within skeletal 

muscle and may have a direct connection with lipoprotein lipase (which catalyzes triglyceride 

utilization). Therefore age-associated decline in estrogen levels can be related at least in part 

to increased intramuscular fat in postmenopausal and decreased muscle strength [45]. One 

mechanism by which the loss of estrogen may be contributing towards age-related sarcopenia 

may be due to the increase of pro-inflammatory cytokines, such as TNF-α or IL-6 [24]. 

Furthermore, estrogen is able to effect directly on muscle mass through estrogen beta-

receptors on the skeletal muscle cell membrane. Therefore, it should be a close potential 

mechanistic relation between decrease in estrogen levels and an impaired in protein synthesis 

[40]. Both of menopause and sarcopenia are associated with decline in muscle mass, 

however, menopause lead to a rapid while sarcopenia refers to the loss of muscle mass with 

age. Because the muscle mass is affected by many factors, and these factors related to aging 

and menopause, Therefore It is difficult to determine the relative contribution of menopause 

on the initiation and progression of sarcopenia [65]. 

 

1.2.3.5. Neural degeneration  

Muscle contraction is initiated and sustained through the successive recruitment of motor 

units; a motor unit defined as an alpha-motor neuron and all the muscle fibers it innervates 

[44]. All skeletal muscles are composed of motor units and each motor unit contains a motor 

neuron and muscle fibers. Motor units can be differentiated to two main types based on the 

fiber type present in the motor unit. Slow motor units are generally involved of type I fibers 

while fast motor units mainly composed of type II fibers [65]. One of the main endogenous 

factors of sarcopenia is likely related to the decrease in motor neuron function. It has been 

suggested that decline of muscle innervation play a crucial role in the sarcopenic process 

since innervation is important to the maintenance of muscle mass, as well as strength [2]. 

Fortunately, many fibers are re-innervated by other motor neurons thereby minimizing the 

loss of functional muscle fibers. However, the process is insufficient to fully compensate for 

denervation resulting in atrophy and progressive loss of muscle fibers. Fast motor neurons 

seem to be preferentially affected and over time the denervation/re-innervation process may 

result in loss and atrophy of type II fibers and fiber type grouping of particularly type I fibers 

[5]. Individuals over 65 years of age have a large volumetric decline in areas of the brain that 

are involved in producing voluntary muscle contraction [10]. Indeed, in man, a 25% decrease 

in the number of a-motor neurons occurs with aging [68]. The number of motor units is 
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almost steady until age of 60 years, but after that rapidly declines is occurred at a rate of 3% 

per year, as it would be expected 60% loss of motor units at age of 80 years [33]. However, 

the extent of these motor unit losses appears to vary considerably, and could be influenced by 

the neurotrophic effects of circulating growth factors (e.g. IGF-1) that can promote motor 

neuron survival [44].  

 

1.2.3.6. Malnutrition  

 

As a natural consequence of aging, it has been reported that food intake reduced by ~25% 

between 40 and 70 years of age, leading to an increased risk of having inadequate nutrient 

intakes among older people. The growing number of the existing data shows that nutrition 

can have an important moderating effect on sarcopenia particularly in relation to protein, 

vitamin D and antioxidant nutrients [69]. Malnutrition leads to loss of muscle mass. It has 

been shown that aging is associated with a gradual reduction in food intake, which prepares 

to energy-protein malnutrition. Furthermore the elderly may be due to the use of diet, weight 

loss and cholesterol control, inadvertently reduce protein intake [70]. Inadequate caloric 

intake, also known as anorexia of aging, can lead to the development of a reduction in the 

availability of amino acids and consequently reduction of protein synthesis [46]. 

Furthermore, the anorexia of aging may cause the malnutrition, which is related to 

modulation of different hormones including testosterone, leptin, growth hormone, and IGF-1 

that contribute to muscle wasting [71]. The multiple complex mechanisms and interactions 

leading to reduced food intake with aging include early satiety secondary to decreased 

relaxation of the fundus, increased release of cholecystokinin in response to fat intake, 

increased leptin levels, which may in part be due to increase in fat mass with aging, and the 

effects of neurotransmitters such as opioids and neuropeptides [4]. Recent data indicate that 

lean mass in older adults is significantly and positively associated with dietary protein intake. 

Inadequate protein intake seems to be an important factor for sarcopenia progression in older 

adults [46]. The current recommended dietary allowance (RDA) of protein is 0.8 g/kg/day 

[9].  It has been shown that 15% of those over 60 years eat less than 75% of the RDA [4]. 

Furthermore, based on nitrogen balance studies, it has been recommended that aging 

population needs greater protein (1.14 g/kg/day) relative to the young (0.8 g/kg/day) [9]. One 

of the reasons that older people need more protein than the recommended amount, can be due 

to the phenomenon “anabolic resistance,” a blunted response of muscle protein synthesis 
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(MPS) following taking of dietary protein in the elderly compared to the young. Interestingly, 

this anabolic resistance is associated with decrease in IGF-1 levels in old age. IGF-1 activates 

mTOR which in turn regulates MPS by initiating translation. Thus, disruption in mTOR 

signaling leads to decreased capacity and efficiency of protein synthesis [9]. Nutrients, 

especially free amino acids, are sensed by the mTOR kinase, which then inhibits autophagy 

[72]. Vitamin D has recently received considerable attention as a potential factor involved in 

sarcopenia [69]. It is evident that vitamin D plays an important role in bone and muscle 

metabolism. Several mechanisms have been suggested for the role of vitamin D in muscle 

function [22]. Human skeletal muscle has a receptor for 1, 25-dihydroxyvitamin D. The 

change of muscle fibers as well as muscle differentiation-related genes (Myogenic factor 5 

(Myf5), myogenin, E2A, and so on) occurs independently of calcium metabolism changes in 

vitamin D receptor-deleted mice [73]. Several studies have shown the beneficial effects of 

vitamin D on skeletal muscle and its ability to prevention of muscle damage [9].   

  

1.2.3.7. Satellite cell dysfunction 
   

While the underlying causes of sarcopenia have yet to be elucidated completely, one potential 

mechanism involves the age-related decline in muscle regenerative capacity, possibly as a 

consequence of a decreased number and/or function of quiescent skeletal muscle precursor 

cells (satellite cells) [43]. Myofibers are post-mitotic cells, and their nuclei do not proliferate. 

New myonuclei are provided by a population called satellite cells [74].  Satellite cells are a 

heterogeneous collection of adult muscle stem cells that are normally quiescent. They were 

first identified more than 50 years ago as a unique population of nuclei that were 

“sandwiched” between the sarcolemma and the basement membrane of the muscle fiber. 

While satellite cells might become activated to the changing cellular niche, they do not be 

exposed until a considerable injury or stress (e.g., exercise loading) occurs [32]. In response 

to injury, satellite cells are activated to form myoblasts create new fibers by fusion together. 

In response to an Injury the IGF synthesis increases and stimulates both satellite cell 

proliferation and differentiation into myoblasts [62].  After proliferation, satellite cells will 

fuse together with existing myofibers [75]. Satellite cells represent the endogenous source of 

muscle precursor cells which undergo activation, proliferation and differentiation to form 

‘new’ muscle fibers, a process regulated by the muscle regulatory factors (MRFs) [44] such 

as myogenic differentiation 1 protein (MyoD), MRF4, Myf5, and myogenin. Specifically, 

MyoD and Myf5 are involved in stimulating myoblasts to enter differentiation and join the 
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muscle lineage, whereas MRF4 and myogenin are suggested to mediate terminal 

differentiation of myoblasts [76]. Pax7 regulates Myf5 and MyoD expression levels in 

satellite cells. The satellite cell pool is reproduced by the part of activated satellite cells that 

maintain a high level of Pax7 [32]. It is thus possible that alterations in MRF expression or 

activity may play a role in muscle wasting during aging [5]. The proliferation and fusion of 

the satellite cell is regulated by specific growth factors protein, (mainly IGF-1) but is also 

influenced by hormones such as GH, testosterone, and estrogen [2] and several signaling 

pathways, such as Wnt-ß-Catenin, DeltaL/Jagged1-Notch or Smad2/3- transforming growth 

factor ß (TGF-ß)/Activin/Myostatin [13]. With aging, Notch activation declines due to a fall 

in MAPK activity, thereby reducing satellite cell activation. This process is compounded by 

accumulation of cyclin-dependent kinase due to an elevation in the levels of TGF-ß. It can 

then deactivates satellite cells and suppresses their regenerative function to injury [33]. 

Reductions in Notch signaling is associated with reduced satellite cell proliferation and an 

inability to generate myoblasts in following muscle injury [32]. Wnt signaling is another 

mechanism witch has also been shown to be involved in satellite cell proliferation and 

differentiation in skeletal muscle regeneration [71]. By several studies, it has been 

demonstrated an age-related decrease in satellite cell number in rodents and humans. It has 

been reported that the mean number of satellite cells decreased in type II, but not type I fibers 

of the vastus lateralis muscle of healthy elderly men, which may help to explain the various 

responses of fast type II fibers compared with slow type I fibers with aging [44]. Although 

the mechanisms involved in satellite cell function changes associated with aging is unclear, 

however, the reduced efficiency of anabolic hormones such as IGF1 and testosterone is seems 

to be a key factor. In this regard, recent studies have been demonstrated that a spliced variant 

of IGF1, known as mechano-growth factor (MGF), may also play a critical role in satellite 

cell proliferation [46].  
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1.2.4. Cellular mechanisms and signaling pathways involved in sarcopenia 

 

Approximately 50 percent of total body weight is composed of lean muscle mass in young 

adults, but declines with aging to 25% at 75–80 years of age. The loss of muscle mass is more 

obvious in in the lower limb muscle groups. For example, it has been reported about 40% 

reduction in the CSA of the vastus lateralis between the ages of 20 and 80 years [77]. 

Maintenance of skeletal muscle mass is mainly dependent on the balance between protein 

synthesis and breakdown. An increase in protein breakdown leads to the muscle atrophy, 

whereas an increase in protein synthesis leads to muscle hypertrophy [78]. Numbers of 

cellular mechanisms and signaling pathways are involved in age-related skeletal muscle 

wasting in mammals (Figure 5). These are discussed in more detail in the following section. 

 

 

1.2.4.1. IGF-1/Akt/mTOR 

 

One of the central pathways to muscle size control is the PI3K/Akt pathway, a pathway 

modulated by IGF-1 and insulin. Stimulation of protein synthesis and hypertrophy involves 

these hormones interacting with their respective tyrosine kinase receptors to phosphorylate 

Figure 5. Molecular mechanisms involved in sarcopenia which can be viewed as the result of a 

protein synthesis/degradation imbalance 
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IRS-1 and activate PI3K/Akt signaling that activates mTOR, and in turn, phosphorylates the 

targets 70-kilodalton ribosomal S6 protein kinase (p70S6K) and 4E-binding protein 1 (4E-

BP1) [79]. Compared with wild-type controls, transgenic mice that overexpress IGF-1 under 

the control of muscle-specific promoters has increased muscle mass, CSA, and maximum 

isometric force [80]. The effects of IGF-1 are mediated generally by the type 1 IGF receptor 

(IGFR1), which has tyrosine kinase activity and signals through the PI3K/AKT pathway. 

IGF-1 also binds to the Insulin receptor (IR) but with much lower (about 100-fold lower) 

affinity than to the IGF1R. There are six IGFBPs. Most serum IGF-1 is found in a tripartite 

complex with IGFBP3 and the acid labile subunit (ALS). IGF-IGFBP complexes are able to 

leave the circulation and effect on tissue unless they are bound to the ALS. In serum, they 

increase the circulating half-life and delivery of IGF-1 to tissues. In tissues, IGF function can 

be modulated due to a higher affinity for IGFs than the receptors. Releasing IGFs from 

IGFBPs Can occur by proteolysis of IGFBPs or binding of the IGFBPs to the extracellular 

matrix [74]. Akt/protein kinase B is a ser/thre kinase that has been shown to be a critical 

signaling component for the regulation of cellular metabolism, growth, and survival [81]. The 

Akt family is composed of three members: Akt1, Akt2 and Akt3. These three isoforms share 

over 80 % homology and are expressed in a tissue specific manner, thus the Akt1 and Akt2 

isoforms are predominantly expressed in skeletal muscle, the brain, heart and lungs and Akt3 

is more expressed in the brain and testicles [82]. Akt plays a number of roles that may be 

important in sarcopenia. These roles are included the inhibition of apoptosis and protein 

degradation in skeletal muscle by increasing phosphorylation and inactivation of the pro-

apoptotic protein Bad and forkhead box O (FOXO) transcription factors, respectively [39]. 

The activation of Akt at same time reduced atrophy by phosphorylating FOXO transcription 

factors, preventing translocation to the nucleus where they would otherwise promote the 

transcription of atrophy-related genes muscle RING-finger protein-1 (MuRF1) and muscle 

atrophy F-box (MAFbx), both of which are ubiquitin ligases that degrade proteins [79]. In 

response to activation of Phosphatidylinositol-3-kinases (PI-3K), phospholipid generation 

increase inside the plasma membrane, which in turn recruit and activate AKT kinase, 

resulting in activation of mTOR and p70S6K [62]. The mTOR acts as a main integrator of a 

broad range of signals that regulate protein synthesis and cell growth. Moreover, mTOR 

indirectly inhibits the translation initiation factor elF4E through directly phosphorylation of 

the protein 4E-BPI. Other mTOR role in increased protein synthesis and muscle mass due to 

its impact on decreasing phosphorylation of S6K kinase, leading to the increase of skeletal 

muscle cross-sectional area [82]. Furthermore, Yin Yang 1 (YY1) physically interacts with 
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mammalian target of rapamycin complex 1 (mTORC1) and mediates mTOR-dependent 

regulation of mitochondrial gene expression via an YY1– Peroxisome proliferator-activated 

receptor-γ coactivator 1-α (PGC-1a) complex [72]. An important negative regulatory element 

in this pathway is the protein Tuberous Sclerosis Complex 2 (TSC2). The TSC2 can 

negatively regulates p70S6K activation in response to IGF-1 by downregulating mTOR 

activation. Phosphorylation of TSC2 by AKT on critical residues, leads to reduce its negative 

regulation on mTOR and consequently increase protein translation. This ability of TSC2 to 

regulate translation is linked directly to cellular energy status [62]. Recent studies 

demonstrate an age-related decline in both systemic and locally derived IGF-1, which may be 

responsible, at least in part, for the age-related decrease in skeletal muscle mass and function 

because of decrease activity of the Akt signaling pathway. Numerous of studies have 

indicated cross-talk between ROS, the proinflammatory cytokine TNF-α, and IGF-1 [39]. 

Skeletal muscle biopsies from older male subjects show a reduction in the cross section area 

(CSA) of type II muscle fibers by 40–45%, in parallel with a 45% decreased GHR protein 

and IGF1 mRNA levels, as well as increased TNF-α and suppressor of cytokine signaling-3 

(SOCS-3) mRNA levels, when compared with younger donors. Furthermore, total Akt, but 

not pAkt, proteins levels increased by 2.5-fold, resulting in a 30% decline in the efficiency of 

Akt phosphorylation in older subjects [60]. 

 

1.2.4.2. MAPKs 

 

Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases that induct 

extracellular signals into a broad range of cellular processes. In the eukaryotic cells 

coordination of multiple MAPK pathways regulate several cellular processes such as gene 

expression, cell division, metabolism, motility, survival, apoptosis, and differentiation [83]. 

The MAPK family of proteins is composed of four distinct signaling modules in skeletal 

muscle: 1) extracellular signal-regulated kinase (ERK) 1/2; 2) p38 MAPK; 3) c-Jun N-

terminal kinases (JNK); and 4) ERK5 or big MAPK. These MAPK subunits are activated by 

cytokines, growth factors, and cellular stress [84]. MAPKs are stimulated by phosphorylation 

on regulatory tyrosine and threonine residues by upstream MAP kinase kinases (MKKs), and 

are deactivated by dephosphorylation on by MAPK phosphatases (MKPs). Despite the 

important role of MAPKs in myogenesis, relatively little information have been known about 

the role of the MAPKs in fiber type establishment. One function for ERK1/2 has been 
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indicated in type I fiber expression by increases myosin heavy chain (MHC) type I expression 

via activation of Ras. The ERK1/2 signaling pathway can stimulates several substrates, such 

as p90RSK, leading to the initiation of transcription factors and the ribosomal subunit S6 

[54]. ERK1/2 can also activate kinases associated with protein translation such as Mnk1 and 

its downstream substrate, eIF4E. One study recently found that the higher baseline levels of 

ERK1/2, p90RSK and Mnk1 in aged compared to young muscle, is possibly a compensatory 

mechanism by the skeletal muscle with increasing age, trying to increasing protein synthesis 

[39]. It has also been shown that p38 MAPK actives the MHC type IIx (intermediate) gene 

expression in myoblasts [54]. In this regard, It has been indicated exposing myotubes to 

either TNF-α or Hydrogen peroxide (H2O2) led to activation all the p38, ERK1/2, and JNK 

[39]. Although role of MAPK in the aging process in vertebrates is still not clearly 

understood, however, some studies in drosophila as well as c. elegans have reported a 

contribution for MAPKs for increase of longevity. Whereas the role of p38 MAPK in 

enhancement of longevity is controversial, JNK activity promote longevity by antagonizing 

insulin signaling. Additionally, decreased ERK1/2 activity throughout aging is known to 

promote senescence [54]. 

 

1.2.4.3. FOXOs  

 

FOXOs transcription factors consist a large family of proteins Identified by a protected DNA-

binding domain termed the FOXO [39]. The FOXO family members which play a 

considerable role in skeletal muscle include three isoforms: FOXO1, FOXO3 and FOXO4 

[72]. The FOXO isoforms are predominantly located in the nucleus where they are activated. 

However, when they are phosphorylated, mainly by Akt protein, these FOXO proteins are 

displaced to cytosol, and they are not able to induce the transcription of genes involved in 

muscle atrophy [82]. Thus, when Akt is active, protein breakdown is suppressed, and when 

FOXO is induced, protein synthesis is blocked. The FOXOs activity is regulated by several 

post-translational modifications, such as phosphorylation, acetylation and mono- and 

polyubiquitination. Adding an additional level of complexity, the regulatory consequences of 

these changes appear to be specific for individual FOXO members [72]. Thus the FOXOs 

proteins may very well play a role in the loss of muscle mass or muscle nuclei with aging 

[85]. Recent studies have been provided evidences that FOXO1 suppresses the efficiency of 

anabolic pathways in skeletal muscle via increased expression and reduced phosphorylation 
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of the translational repressor protein 4E-BP1 and impaired signaling via reductions in mTOR 

and Raptor levels. Based on these observations, the possibility can be considered that, in 

mammalian skeletal muscle, FOXO1 may not only stimulates the catabolic processes through 

activation of ubiquitin ligases, but may also inhibits anabolic pathways. FOXO1 may be an 

important therapeutic target for human diseases in which anabolism is impaired [39]. FOXOs 

are among the age related transcription factors which are involved in the redox regulation. 

Increased FOXO1 mRNA has been reported in aged muscle using standard microarray 

analysis, while another study demonstrated increased atrogin-1 mRNA in aged rats [39]. 

Furthermore, It has been found FOXO1 expression in nuclei of aged muscle was higher than 

those of young muscle [85]. It has also been identified that the FOXO-regulated ubiquitin E3-

ligases Atrogin-1/MAFbx and MuRF1 is common in muscle atrophy caused by a range of 

etiologies [86]. In this regard, it has recently been shown that under energy stress situation 

AMPK increased activation of FOXO3 in myofibers, inducing expression of atrogin-1 and 

MuRF1 [72]. In skeletal muscle, FOXO4 is believed to be the most common expressed 

member of the FOXOs [86]. FOXOs activity is also regulated by direct or indirect functions 

of co-factors and by interaction with other transcription factors. An interaction has been 

demonstrated between FOXOs with PGC-1a. Under catabolic conditions similar to the effect 

observed for expression of constitutively active FOXO3 during aging and sarcopenia, 

maintaining high levels of PGC-1a protects muscle mass. 

 

1.2.4.4. TGFβ (Myostatin) 

 

Other factors that have been shown to modulate muscle regeneration belong to the family of 

TGFßs, which are known to suppress myogenic differentiation [43]. Myostatin, a member of 

TGFß superfamily, is one of the main signaling pathway that regulates skeletal muscle 

growth. Myostatin is produced by skeletal muscle and negatively regulates muscle growth 

[72]. It is expressed in both embryonic and adult skeletal muscle, suggesting that myostatin 

acts as a regulator of both prenatal and postnatal myogenesis [87]. Myostatin, similar with 

other family members, after synthesis to a precursor protein then is cleaved by furin proteases 

to produce the active C-terminal dimer [40]. Studies indicate that myostatin regulates cell 

cycle progression and myogenic regulatory factor levels, thereby controlling myoblast 

proliferation and differentiation during developmental myogenesis. In addition, myostatin 
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also influences postnatal muscle growth. In support, it has been reported that myostatin is 

able to regulate myogenesis via the suppression of satellite cell activation in mice [87]. It has 

been demonstrated that adding purified myostatin to differentiated myotubes in culture led to 

an inhabitation of protein synthesis and decreased myotube size. Furthermore, systemically 

administration of myostatin has been shown for inducing muscle atrophy in mice [72]. 

Myostatin is believed to mediate its actions on skeletal muscle via activin type II receptors A 

(ActRIIA) and activin type II receptors B (ActRIIB), with more affinity for ActRIIB [44], 

Binding myostatin to ActRIIB resulted in forming a complex with a second surface type I 

receptor, either activin receptor-like kinase 4 (ALK4) or activin receptor-like kinase 5 

(ALK5), leading to stimulation of the phosphorylation of receptor Smad (Rsmad), and 

Smad2/3 transcription factors in the cytoplasm. Then Smad2/3 modulate nuclear gene 

transcription such as MyoD by translocation from cytosol to nuclear through a TGF-ß-like 

mechanism [29]. The effect of myostatin, which mediated by the transcription factors Smad2 

and Smad3, also interact with IGF1-Akt signaling. Myostatin has been reported to upregulate 

the ubiquitin ligases atrogin1 and MuRF1 via FOXO transcription factors. In this regard, 

myostatin administration has been shown to blocking the IGF1-PI3 K-Akt pathway and 

activation of FOXO1, allowing increased expression of atrogin-1. This connection between 

the two pathways is independent of NFкB [63]. In contrast, Smad2/3 inhibition increase 

muscle hypertrophy partially dependent on mTOR signaling [40]. 

The involvement of myostatin in loss of muscle mass during aging is still debatable. 

Significant increase in myostatin mRNA and protein levels (2- and 1.4 fold respectively) has 

been found in the older males compared to the young subjects [19]. In contrast, there was an 

increase in serum levels of TGF-ß in old humans, but circulating levels of myostatin were not 

different between young and older subjects. It has been indicated that despite any 

recognizable increase in circulating myostatin levels, local intramuscular content of 

myostatin are increased with aging in humans [80].  

In order to examine the contribution of myostatin in age-related sarcopenia, Siriett et al. [87] 

studied muscle mass and regeneration in young and old myostatin-null mice. Their result 

demonstrated there was massive hypertrophy and hyperplasia and an increase in type IIB 

fibers in Young myostatin-null mice subject. Aging was associated with increasing oxidative 

and fiber atrophy in muscle of wild-type. In contrast, there was no fiber type switching and 

also lower atrophy in aged myostatin-null muscle. Aging did not lead to significant effect on 
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satellite cell number, however, satellite cell activation reduced significantly in both wild-type 

and myostatin-null muscles [87]. GH and IGF-1 may have an inhibitory effect on myostatin, 

therefore one potential cause of increased myostatin in aged skeletal muscle is the attrition of 

GH and IGF-1 expression. Myostatin may decreased muscle growth by inhibition satellite 

cell activation, as well as promoting an adipogenic cell fate over myogenicity [45]. 

Proteolysis effect of myostatin can be modulated by at least three interacting proteins, 

namely, GDF-associated serum protein-1 (GASP-1), follistatin, and follistatin-related gene 

(FLRG). It is accepted that the abundance of these endogenous inhibitors of myostatin and/or 

the degree to which they interact with myostatin is independently affected by aging [77]. 

Follistatin is expressed in different tissues and acts as an antagonist of different TGF-ß family 

members [82], Follistatin is expressed in different tissues and acts as an antagonist of 

different TGF-ß family members, which has been thought to be involved in the regulation of 

skeletal muscle mass. Follistatin prevents myostatin from binding to the activin IIb receptor, 

by binding and thereby neutralizing myostatin in the circulation. As a consequence, the 

expression of intramyocellular Smad is prevented, thereby blocking gene transcription. One 

study investigated knockout mice for the gene of follistatin and found excessive loss of 

muscle mass. On the other hand, follistatin-overexpressing mice showed a 327% increase in 

muscle mass compared to the control group. The remarkable increase in muscle mass 

observed in these mice was as a result of an increment in both of muscle hypertrophy (27%) 

and hyperplasia (66%) [82]. Follistatin plays important role in activation of Akt–mTOR 

signaling through decreases activity of Smad3 since constitutively active Smad3 was found to 

suppress follistatin-induced muscle growth and mTOR activation. Other potential reason can 

due to a direct interaction between Smad3 and Akt, as demonstrated in other cell systems, 

may be involved in cross-talk between the myostatin/activin A and IGF1 pathways in skeletal 

muscle [72]. 

 

1.2.4.5. NF-κB 

 

NF-кB transcription factor is a major pleiotropic transcription factor that modulates immune, 

inflammatory, cell survival, and proliferative responses. NF-кB activity seems to directly 

regulate MyoD, which is a myogenic transcription factor, and likely other molecules, such as 

MuRF1, during atrophy. ROS and TNF-α both activate NF-кB [39].   NF-кB is composed of 
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a number of proteins (RelA/p65, cRel, RelB, p50 and p52), known as  NF-кB family 

members that cooperate to form a complex. In most tissues, p65/p50 heterodimers are the 

most frequent and are characterized to be active form of and are involved in most NF-кB 

signaling in skeletal muscle. NF-кB can be kept in an inactive form in the cytosol through the 

binding of an IкB. There are seven isoforms of IкB (IкBα, IкBß, IкBγ, IкBɛ, Bcl-3, p100, 

p105) in mammals with each form possessing the ability to inhibit NF-кB. Upon certain 

stimuli, IкBα is phosphorylated by IкB kinase (IKK) in a step that targets IкBα for 

ubiquitination and subsequent proteolysis, thereby leaving NF-кB unbound. This process 

allows the unbound NF-кB to translocate to the nucleus where it can affect gene expression 

by binding NF-кB-target sequences located in the promoter region of specific genes [88]. 

Although there is little information about the role NF-кB in the onset and progression 

sarcopenia, however, several studies have found a significant causal role for NF-кB 

activation in muscle atrophy [89]. One study has reported that the levels of NF-кB was four 

times higher in the muscles of elderly people compared with their young counterparts.; this 

increased concentration is associated with anabolic signaling deficiency observed in age 

related muscle wasting [39].  Mice transgenic for an active form of IKKß exhibit a muscle 

wasting phenotype. Indeed, inhibition of NF-кB activity in macrophages was associated with 

reduced muscle degeneration, while systemic treatment with an IKK inhibitor reduced 

pathologies associated with muscular dystrophy  [89]. Aging also affected TNF-α signaling to 

NF-кB. Intermediary proteins (IKKβ, IкBα, and p65), which are responsible for the 

transmission of the TNF-α activation of NF-кB, increased with age in the soleus muscle [39]. 

 

1.2.4.6. Apoptosis  

 

Recent studies also suggest that apoptosis might be another mechanism involved in 

sarcopenia [43]. Apoptosis is an important process for cellular function which occurs in 

multicellular organisms and plays Considerable role in normal development and for 

maintaining tissue homeostasis [90]. Apoptosis is a programmed cell death process that 

occurs through a series of coordinated events, resulting in cellular self-destruction without 

inflammation or damage to other cell components [91]. It is hypothesized that the 

acceleration of apoptosis in the aging muscle may represent a converging mechanism through 

which muscle atrophy and physical function decline ensue. Indeed, it has been indicated that 
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there is a positive correlation between the loss of muscle mass and strength and the rate of 

increase in apoptosis associated with aging. Apoptosis is initiated by the induction of signals 

of cell death, which are generated due to unbalance in the regulation of free calcium and 

alteration in the composition of some protein families. After that, activation of cell surface 

receptors or mitochondrial pathways, resulted in triggering cytoplasmic and nuclear events 

that lead to cell death [90]. Broadly, the apoptotic machinery comprises regulatory proteins, 

endonucleases, protease inhibitors and proteolytic enzymes, known as initiator cysteine-

aspartic proteases (caspases). Upon cell death stimulus, caspases initiators (i.e. caspase-8, -9 

and -12) are engaged, leading to the activation of effector caspases (i.e. caspase-3, -6 and -7), 

which are responsible for cellular degradation and DNA fragmentation [91]. Caspases are the 

major enzymes involved in the beginning and the development of apoptosis. They are 

considered for proteolytic cleavage of a wide range of cell targets, although they do not alone 

initiate that process [90]. Two main pathways involved in caspase activation are distinct 

based on the extrinsic or intrinsic origin of the death-inducing stimulus. In The extrinsic 

pathway, caspase is activated through the interaction of cell surface death receptors (e.g. 

tumor necrosis factor receptor (TNF-R)) with their ligands (e.g. TNF-α) [91]. While, intrinsic 

pathways of caspase activation include those triggered by the ER and the mitochondrion. 

Under stress conditions, such as calcium dyshomeostasis, the ER-specific procaspase-12 can 

be activated by m-calpain, leading to caspase-3 activation [31]. Although apoptosis may 

occur via several mechanisms but it has been shown recently that mitochondria plays 

considerable contribution in the regulation of apoptosis. Furthermore it is thought that 

internal cellular stimuli, such as high levels of calcium or reactive oxygen intermediates, may 

trigger apoptosis by the Cytochrome C (Cyto C)-dependent pathway [92]. Upon stimulation, 

mitochondria release Cyto C into the cytosol which then complexes with apoptotic protease 

activating factor-1 (Apaf-1), ATP and caspase-9 forming the apoptosome. The apoptosome 

then activates caspase-9, which in turn cleaves and activates caspase-3, the final executor of 

the apoptotic process [30].  The mitochondria can initiates apoptosis independent of caspase 

activation via the release of Apoptosis-inducing factor (AIF) and endonuclease G (EndoG), 

both of which can directly execute DNA fragmentation [91]. Since the AIF is located in the 

mitochondrial intermembrane space, it plays an important role in mitochondrial function, 

especially for the proper functioning of complex I. AIF acts as a NADH-oxidase activity. 

After being released from the mitochondria into the cytoplasm, it is then transported into the 

nucleus where it binds to DNA to induce chromatin condensation. AIF can also together with 

cyclophilin A constitute an active DNase responsible for fairly large DNA fragmentation. In 
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response to apoptotic stimulations, AIF along with Cyto C release from mitochondria and 

activate the caspase cascade. However, AIF is thought to be able for inducing apoptosis 

independently of caspases. In addition to AIF, under apoptotic conditions EndoG which is a 

mitochondrion-specific nuclease and necessary for normal cell proliferation, releases from 

the mitochondria and enters the nucleus, where it participates in oligonucleosomal DNA 

fragmentation [93]. Since the AIF is located in the mitochondrial intermembrane space, it 

plays an important role in mitochondrial function, especially for the proper functioning of 

complex I. AIF acts as a NADH-oxidase activity. After being released from the mitochondria 

into the cytoplasm, it is then transported into the nucleus where it binds to DNA to induce 

chromatin condensation. AIF can also together with cyclophilin A constitute an active DNase 

responsible for fairly large DNA fragmentation. In response to apoptotic stimulations, AIF 

along with Cyto C release from mitochondria and activate the caspase cascade. However, 

AIF is thought to be able for inducing apoptosis independently of caspases. In addition to 

AIF, under apoptotic conditions EndoG which is a mitochondrion-specific nuclease and 

necessary for normal cell proliferation, releases from the mitochondria and enters the nucleus, 

where it participates in oligonucleosomal DNA fragmentation [31]. Translocation of Bcl-2-

associated X protein (Bax) to the mitochondria in response to apoptotic stimulations, Leads to 

formation of a pore on the outer mitochondria membrane (OMM), subsequently triggering 

apoptotic factors stored in the intermembrane compartment into the cytoplasm. In this 

process the pro-apoptotic factors Bid and/or Bim are involved in activation of Bax and/or 

Bak, possibly through neutralizing B-cell lymphoma-2 (Bcl-2) and Bcl-XL activity. In 

addition, the mitochondrial permeability transition pore (mPTP) opening can also cause 

mitochondrial outer membrane permeabilization (MOMP). The mPTP is a protein structure 

that is composed of three main considered units: a voltage-dependent anion channel (VDAC) 

in the OMM, the adenine nucleotide translocase (ANT) located in the inner mitochondrial 

membrane (IMM), and cyclophilin D (CyPD) in the matrix. Formation of the mPTP requires 

interaction between ANT and VDAC with CyPD associated with the IMM. Opening of the 

mPTP permits free diffusion of low-molecular weight solutes across the IMM. This results in 

a mitochondrial permeability transition (MPT), conditions that lead to uncoupling of 

oxidative phosphorylation and reduced ATP production [93]. Several stimuli, including 

calcium, oxidative stress, and TNF-α can trigger apoptotic signaling in aged skeletal muscle. 

Recently age-related sarcopenia and muscle fatigability have been suggested to be associated 

with increased ROS production, enhanced mitochondrial apoptotic susceptibility, and 

reduced transcriptional drive for mitochondrial biogenesis [39]. In addition, an age related, 
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increased cytosolic Ca2+ levels may have contributed to the activation of the endoplasmic 

reticulum-mediated apoptotic pathway [39]. An increased expression of pro-apoptotic 

proteins and caspases and DNA fragmentation have been found, with a concomitant decrease 

in expression of anti-apoptotic proteins in aged skeletal muscle [45]. Results from human and 

animal studies have found that caspase-independent pathway is upregulated with age [52]. In 

this regard, higher levels of the pro-apoptotic protein AIF, with an associated decrease in the 

apoptotic repressor with a caspase recruitment domain (ARC) has been reported in aged (26 

mo) rat gastrocnemius relative to adult (12 mo)  [45]. Age related increase in the proportion 

of apoptotic cells was found generally more in type II fibers in humans [52]. A different age-

related pattern of Bcl-2 and Bax expression has also been indicated in rats based on the 

muscle type. In this regard, Bax content was elevated at old age in the extensor digitorum 

longus (EDL), whereas no changes were found in the soleus. In contrast, an increased 

expression of Bcl-2 was observed in both muscles at advanced age [93]. In connection with 

this, a higher muscle cell apoptotic index was found in the plantaris muscles (9.9-fold) as 

opposed to the soleus muscles (3.2-fold) in rats following hind limb suspension in aged rats 

compared with ambulatory control rats. This finding proposes the concept that incidence of 

muscle cell apoptosis could vary depending on muscle types or even between species [94]. 

 

1.3. Therapeutic strategies 
 

Pathology of sarcopenia is multifactorial and there are no effective cure until now [42, 71]. 

However, due to this multifactorial cause, previous studies have examined alone or in a 

combination of the different therapeutic strategies, including nutritional and pharmacological 

intervention [94-97], caloric restriction (CR) [52, 54, 98], exercise training [76, 99-103] and 

hormone therapy [59, 61, 74, 104]. Here we discuss each in more detail. 

 

1.3.1. Nutritional and pharmacological intervention 

 

The current RDA for protein is 0.8 g/kg/day, but almost 40% of people >70 years do not 

consume sufficient amounts of dietary protein which leads to a reduction in lean body mass 

and increased functional impairment [22]. Thus, nutritional interventions may be useful and 

potential strategy for the prevention and treatment of sarcopenia due to the easy applicability 
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and safety [70]. It has been indicated that anabolic nutrients increase the phosphorylation of 

mTOR-associated signaling proteins in human muscle in association with an increase in 

protein synthesis through both enhanced translation initiation and translation elongation 

signaling [39]. 

Numerous studies have examined the effect of protein and amino acid intervention on MPS in 

the elderly [105-108]. In this regards, Volpi et al. [107] reported that essential amino acid 

(EAA) are mainly responsible for the stimulation of muscle protein anabolism in the elderly. 

They compared the muscle protein metabolism response of healthy elderly to oral 

supplementation of either 18 g EAA or 40 g balanced amino acids in small boluses every 10 

min for 3 h. Their result showed that phenylalanine net balance, a reflection of muscle protein 

balance, increased from the basal state, with no differences between groups, due to an 

increase in MPS and no change in breakdown [107]. In another study, Katsanos et al. [108] 

studied the effects of enriching an EAA mixture with leucine on muscle protein metabolism 

in elderly and young individuals. EAAs were including of whey protein [26% leucine (26% 

Leu)] or were enriched with leucine [41% leucine (41% Leu)]. No significant increase was 

observed in fractional synthetic rate in the elderly following ingestion of 26% Leu EAA, but 

increased following administration of 41% Leu EAA. However, the mean response of muscle 

phenylalanine net balance was promoted in all groups, with the exception of the 26% Leu 

elderly group. They then concluded that increasing the proportion of leucine in a mixture of 

EAA can reverse an attenuated response of MPS in elderly [108]. One possibly underlying 

mechanisms of leucine's effects, similar to those of IGF-1 treatment, can be due to its effect 

on phosphorylation of mTOR, p70S6K and 4EBP-1 [109]. 

It has been suggested that a regime of combination of antioxidants supplementation alone or 

associated with a diet may possibly increase antioxidant defenses, lower muscle oxidative 

damage, and improve muscle protein balance during senescence [2]. Sinha-Hikim et al. [94] 

investigated the effect of administration of a cystine-based antioxidant (F1) on age-specific 

changes in skeletal muscles. Their result showed that 6 months supplementation increased 

markers of oxidative stress, inflammation, and muscle cell apoptosis and decreased muscle 

weight in old mice compared with young mice (5 months old). They then found F1 

administration significantly prevented these age-related changes including inactivation of 

AMPK, increased lipogenesis, activation of c-Jun NH2-terminal kinase, and decreased 

expression of Delta 1, pAkt, and proliferating cell nuclear antigen in aged skeletal muscle. 

These data indicate the beneficial effects of F1 to reduced age associated loss of muscle mass 
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[94]. Positive effects of vitamin D supplementation were also shown, increasing muscle 

strength and performance and reducing the risk of falling in elderly with low vitamin D levels 

[40]. Bischoff et al. [110] have reported that supplemental vitamin D in a dose of 700-1000 

IU a day resulted in a 19% reduced risk of falling among older individuals [110]. 

Furthermore, 2–12 months administration of 800 IU of vitamin D to individuals aged 65 

years and older, markedly enhanced lower extremity strength or function by 4–11 % after of 

treatment [111]. 

Aside from the effect of natural nutrients supplementation, some studies investigated effects 

of pharmacological strategies for age related muscle wasting. In this regards, 

pharmacological inhibition of myostatin may have potential therapeutic benefits in the 

treatment of sarcopenia [22]. LeBrasseur et al. [112] investigated effects of myostatin 

blocking by anti-human myostatin antibody (PF-354) relative to a vehicle control, on 

performance and metabolic measures in 24-month-old mice. At the end of study, PF-354–

treated mice showed significantly greater muscle weights and more than 30% declines in 

muscle fatigue. PF-354 was associated with decreased Smad3 phosphorylation and increased 

PGC-1a expression and decreased MuRF-1 [112]. In another study, Murphy et al. [113] 

found that PF-354 reduced the age related decline in muscle mass and function of mice by 

reducing apoptosis. In fact, there result demonstrated that PF-354 prevented the age-related 

decline in body mass and increased muscle mass. PF-354 also increased fiber CSA by 12% 

and enhanced maximum in situ force of tibialis anterior muscles by 35%. Myostatin 

inhibition by PF-354 increased the proportion of type IIa fibers by 114% and enhanced 

activity of oxidative enzymes (SDH) by 39%. PF-354 significantly reduced markers of 

apoptosis in TA muscle cross-sections and reduced caspase3 mRNA [113]. These data 

suggest a therapeutic potential of the pharmacological myostatin inhibition for sarcopenia. 

Other pharmacological components such as Angiotensin-converting enzyme inhibitors and 

losartan (an angiotensin II receptor antagonist) has been candied and studied against 

sarcopenia [22, 26, 114]. However, further studies are needed to determine their contribution 

to the prevention and treatment of sarcopenia. 

 

 

 



39 
 

1.3.2. Caloric restriction (CR)   

 

One of the most powerful anti-aging intervention is CR without malnutrition [27], which 

exerts this effect in multiple ways [54]. CR is generally regarded as consuming 20–40% 

fewer calories than normal [52]. CR intervention positively modulates both primary aging 

(natural age-related deterioration) and secondary aging (accelerated aging due to disease and 

negative lifestyle behaviors) [52]. A number of studies have investigated the effects of CR on 

sarcopenia [115-118]. Bua et al. [115] studied the role of CR (40% restriction without 

nutrition deficiencies) in electron transport system (ETS) enzymatic abnormalities in two 

quadriceps muscles (vastus lateralis and rectus femoris) from ad libitum fed (5, 18, and 36 

months) and calorie-restricted rats (36 months). CR reduced the abundance of ETS abnormal 

fibers in vastus lateralis muscles of the 36-month-old calorie-restricted rats. However, CR did 

not prevent fiber atrophy in ETS abnormal regions. Their result suggest that CR leads in the 

producing of less ETS abnormalities, thus affecting/inhibiting a process that ultimately results 

in fiber loss [115]. CR has been indicated to decreases markers of apoptosis in aging rat 

skeletal muscle [98]. In this regard, Dirks et al. [116] investigated main proteins involved in 

apoptotic regulatation in the gastrocnemius muscle of 12 and 26 month old ad libitum fed and 

26 month old calorie-restricted male Fischer-344 rats. They found that CR significantly 

reduced age-elevated levels of pro- and cleaved caspase-3, apoptosis-inducing factor and 

expression of procaspase-12 compared with their age-matched cohorts. Also increased 

mitochondrial levels of the ARC, which inhibits    Cyto C release, were lower in calorie-

restricted rats, can indicate a translocation of this protein to attenuate oxidative stress. They 

then concluded that CR is able to reduce the potential for sarcopenia by altering several key 

apoptotic proteins toward cellular survival in aged skeletal muscle [116]. Furthermore, 32 

months of CR retarded muscle mass loss in 36 months old rats compared with age match 

controls. However, CR did not prevent age related muscle mass lose while 36 months old 

compared with 21 months old rat in CR groups [117]. CR has been shown to decreases 

oxidant production during aging probably due to an anti-inflammatory effect. This later can 

happen by decreased MAPK activity and enhanced deacetylasion of SIRT1. It has been 

hypothesized that SIRT1 deacetylates, and therefore decreases activity of MKP-1, leading to 

increased PGC-1a function, thus, preventing myofiber dysfunction [54]. Nevertheless, 

regardless of the benefits of CR on sarcopenia one important problem, which should be taken 

into consideration, is the exact time frame for starting CR. When started too early in life, it 

may cause developmental problems and if started too late benefits may not be achieved [71]. 
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1.3.3. Exercise training 

 

It is well accepted that less physically activity in older adult is associated with reduced 

skeletal muscle mass and increased prevalence of disability [4]. A sedentary lifestyle results 

in reduced activity levels and loss of muscle mass and strength [95]. One of the effective 

stimuli for the regulation of multiple metabolic and transcriptional processes in skeletal 

muscle is physical exercise [81]. Exercise is generally categorized to: endurance training, 

which is characterized by low resistance work of longer duration, and resistance training, 

which is characterized by more powerful movements of shorter duration [119]. Both types, 

such as resistance and endurance exercise interventions have been found to be effective in 

preventing and postponing age-associated issues that cause sarcopenia [14]. However, the 

mechanism(s) by which exercise protects skeletal muscle against sarcopenia remain poorly 

understood; it can be, at least in part, due to decreasing intramuscular adipose tissue, pro-

inflammatory cytokine levels, oxidative stress and DNA fragmentation as well as the 

delay/prevention of telomere shortening and increased sex hormone levels, protein synthesis 

and growth factors [45].  

 

1.3.3.1. Resistance training  

 

Resistance exercise training (RT) is an effective intervention for preventing and treating 

sarcopenia due to its ability to stimulate and promote net muscle protein anabolism, resulting 

in specific metabolic and morphological adaptations in skeletal muscle tissue and also in 

positive effects on metabolic, cardiovascular, and reproductive systems [14, 80, 120]. 

Considerable numbers of investigations have examined skeletal muscle responses to both 

acute and chronic RT in the elderly [51, 76, 78, 99, 100, 119]. However, the results of 

previous studies are conflicting regarding the acute effect of RT. In this regard, Fry et al. [78]  

measured intracellular signaling and MPS following an acute bout of RT in young and older 

subjects. At baseline and at 3, 6 and 24 hours after RT, muscle biopsy was taken from the 

vastus lateralis. No changes have been seen in phosphorylation for several key signaling 

proteins, mTOR, S6K1, 4E-BP1 and ERK1/2 after exercise in older group. An increased 

MPS after exercise from baseline has been found only in the younger group [78]. On the 

other hand, Ruae et al. [76] Investigated mRNA expression of several key skeletal muscle 
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myogenic controllers at rest and 4 hours after a single bout of RT in young and old women. 

Subjects performed 3 sets of 10 repetitions of bilateral knee extensions at 70% of one 

repetition maximum. RT led to upregulation of MyoD (2.0-fold) and MRF4 (1.4-fold) and 

downregulation of myostatin (2.2-fold) [76]. Following a series of investigations, Ruae et al. 

[100] Studied acute bout of RT on mRNA expression of ubiquitin proteasome-related genes 

involved in muscle atrophy in very old women. The RT protocol consisted of three sets of 10 

knee extensions at 70% of one-repetition maximum. Muscle biopsies were taken from the 

vastus lateralis before and 4 hours after RT. The result demonstrated an induction of atrogin-

1 and MuRF-1 gene expression in response to RT. These data suggest that in response to RT 

the regulation of ubiquitin proteasome-related genes involved in muscle atrophy are altered in 

very old women (> 80 years) [100] .  

In contrast to acute RT, Melov et al. [51] Compared gene expression profiling and a subset of 

these genes were related to muscle strength in healthy older and younger adult men and 

women before and after a six-month RT program. In response to RT, strength improved 

significantly in older adults. Following RT, the transcriptional signature of aging was 

significantly reversed back towards younger levels for most genes. The authors then 

concluded that mitochondrial impairment and muscle weakness are favorably regulate altered 

at the phenotypic and transcriptome level, following six months of RT [51]. In support of the 

effects of RT on age related changes in mitochondrial function, Luo et al. [99] investigated 

the signaling pathways that regulate autophagy and apoptosis in the gastrocnemius muscles of 

18–20 month old rats in response to 9 weeks of RT. Their finding demonstrated that RT 

prevented the loss of muscle mass by reduced Microtubule-associated protein 1A/1B-light 

chain 3 (LC3)-II/LC3-I ratio, reduced p62 protein levels, and increased levels of autophagy 

regulatory proteins, including Beclin 1, Autophagy-related protein 5/12 (Atg5/12), Atg7, and 

the lysosomal enzyme cathepsin L. These improvements in autophagy signaling were 

associated with an upregulation of total AMPK, phosphorylated AMPK, and FOXO3a 

expressions. Their results also showed that RT inhibited apoptosis by reduced Cyto C level in 

the cytosol, and inhibited cleaved caspase 3 production. They also found that RT upregulated 

the expression of IGF-1 and its receptors, but downregulated the phosphorylation of Akt and 

mTOR. These results suggest an anti-apoptotic role for chronic resistance exercise most 

likely by the inhibitory effects on mitochondria-mediated apoptosis in aged skeletal muscle 

[99].  
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The exact mechanism by which RT stimulates protein synthesis and reduces sarcopenic 

conditions in aged skeletal muscle is not yet fully understood. However, it is well known that 

Akt/mTOR signaling and Akt/FOXO3a signaling are both major regulators of skeletal muscle 

hypotrophy and atrophy. It has been speculated that in response to RT, IGF-1 and its 

receptors, as well as the Akt/mTOR and Akt/FOXO3a signaling pathways may be modulated 

[99]. In fact, in response to RT, IGFI/MGF activate PI3K, which leads to membrane 

translocation and subsequent phosphorylation of Akt by PDKI and PDKII. Once activated, 

Akt phosphorylates mTOR and GSK3ß, which play a mediator role in protein synthesis, 

transcriptional and proliferative processes related to hypertrophic response, as well as the 

control of protein degradation [82]. Other mechanisms that are involved in the synthesis of 

muscle protein are the MAPK signaling pathways. It has been shown that in response to RT, 

phosphorylation of ERK1/2 MAPK is increased and mTOR is activated [9]. mTOR activation 

by the ERK pathway may be through the phosphorylation of TSC2 [82]. It is important to 

consider that the effects of RT are dependent on the mode of exercise, including intensity, 

duration and frequency and also on the tissue types [99]. 

 

1.3.3.2. Endurance training 

 

In addition to resistance exercise, aerobic endurance training (ET) also have been shown for 

potential role in the integrity and health of the aged skeletal muscle [121]. One of the serious 

consequence of aging is a progressive deterioration in aerobic exercise capacity due to 

reduced quantity or quality of skeletal muscle mitochondria [122], as well as decline in 

enzyme activities and protein content [53]. It is well known that ET not only improve 

maximal oxygen consumption (VO2max), mitochondrial density and activity, insulin 

sensitivity and energy expenditure [70], but can also reduce intramuscular fat and improve 

muscle functionality in young and older individuals [9]. An increase in the CSA of muscle 

fibers following ET, supports the notion that ET can contribute to improvement of muscle 

quality [22]. Numerous studies have investigated the effects of acute [81, 123-125] and 

chronic [50, 56, 61, 96, 98, 102, 103, 121, 126-132] ET on age related skeletal muscle 

adaptation in both humans and rodents.  

In order to investigation of acute effect on skeletal muscle mitochondria in older subject, Bori 

et al. [123] Studied a single bout of ET on mRNA levels of genes involved in mitochondrial 
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biogenesis. They were interested in comparing old sedentary and old physically active 

individuals in response to acute ET. Compared to old sedentary control, ET resulted in an 

increased expressions mRNA levels of SIRT1 and AMPK subunit A2, but no change in the 

levels of PGC-1a, AMPK subunit B2, transcription factor A, mitochondrial (Tfam), 

Polynucleotide Phosphorylate (PNPase), Mitochondrial uncoupling protein 3 (UCP3), Lon 

protease, SIRT3. Training also reduced expression of Nrf1, mitochondrial fission protein 1 

(Fis1) and mitochondrial fusion 1 (Mfn1) mRNA levels in old sedentary acute ET. an acute 

exercise bout Led to an significant increase in AMPK subunit A2 and PNPase expressions, 

maintained levels of SIRT1, PGC-1a, AMPK subunit B2, Tfam, Mfn1, UCP3, Lon protease 

and SIRT3, but decreased Nrf1 and Fis1 expression mRNA expression levels in old 

physically active subjects compared to control values [123]. These findings suggest that level 

of fitness may affect mitochondria adaption following acute ET. In contrast to acute ET, 

chronic ET appears to have considerably greater effects. Konopka at al. [56] examined the 

influence of 12 weeks of progressive ET on a cycle ergometer on markers of mitochondrial 

content in old women. Compared to basal levels, ET significantly increased PGC-1a protein 

content and levels of Citrate synthases (CS), ß-hydroxylacyl Co A dehydrogenase (ßHAD), 

succinate dehydrogenase (SDH) and cytochrome c oxidase (Cox) 4. In addition mitofusion or 

mitofission proteins Mfn1, Mfn2 and FIS1 protein contents were greater after ET [56]. In 

accordance with the previous results, Bo et al. [121] Found 12 weeks of ET stimulates 

mitochondrial biogenesis and network and also improves the efficiency of mitochondrial 

energy transfer in old rats. ET also increased Cox 4 content in trained compared with control 

old rats. Furthermore, Dynamin-related protein 1 (Drp1) protein, but not Mfn1, significantly 

increased after ET in the old training group. In addition, in response to training, ATP 

synthase activity -as an indication of mitochondrial energy production- increased when 

compared to the control group [121]. Upregulation of PGC-1a signaling is probably one of 

the main mediators in aged skeletal muscle mitochondrial adaptation to ET [29]. Findings 

from a study conducted by Kang et al. [131] Demonstrated that 12 weeks of ET increased 

PGC-1a content by 2.3 fold in trained compared to control old rats. This increased PGC-1a 

content was correlated with a significant increase in Tfam, Cyto C and mtDNA contents after 

ET in old rats. In response to ET, there was an increase in upstream signaling, involving 

PGC-1a activity including AMPK, p38MAPK, SIRT1 and p- cAMP response element-

binding protein (CREB) in the old trained vs. old control rats. These data indicate that aging-

associated decline in mitochondrial protein synthesis in skeletal muscle can be attenuated 

following chronic ET [131]. In this regards, another study, conducted by Broskey et al. [50], 
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investigated the effect of 4-month of ET intervention on proteins involved in mitochondrial 

biogenesis in sedentary older adults. In response to ET the levels of complexes III, IV, and V 

were significantly increased. Furthermore, a significant correlation was observed to the 

increase in Tfam expression levels and increase in PGC1a expression levels after the 4 

months of exercise intervention. However, there were no change in Nrf1 and Nrf2 expression 

levels in responses to ET in older sedentary subjects [50]. 

One another important mechanism by which ET supports aged skeletal muscle may be due to 

its role in inhibition apoptosis process [39, 45, 133]. In this regards, Song et al. [98] reported 

that anti-apoptotic Bcl-2 increased, while significant reduction in DNA fragmentation, 

cleaved caspase-3, Bax, and Bax/Bcl-2 ratio were observed in the white gastrocnemius and 

soleus muscles of old rats in response to 12 weeks of ET. Furthermore, age-related decrease 

in upstream anti-apoptotic NF-B activity was reversed following ET [98]. Recently Marzetti 

et al [61] confirmed the hypothesis that age-associated apoptosis occurs less in type I muscle 

fibers, such as the soleus muscle, than type II fibers and therefore less likely to be affected by 

short-term ET. Their result showed, that in contrast to EDL, there was no significant changes 

in TNF-R1 expression, cleaved caspase-8 and -3 content, and apoptotic DNA fragmentation 

in soleus muscle of young and old groups and also in response to ET intervention [61].  

A potential role for ET to increase the circulating levels of IGF-1 has also been suggested 

[134]. In this regard, Poehlman et al. [129] reported that 8 weeks of ET significantly 

increased fasting levels of IGF-1; more markedly in older men than women. There was also a 

significant correlation between changes in VO2max and IGF-1 in men, but not in women 

[129]. In addition, a study conducted by Manetta et al. [125] showed that basal levels of GH, 

IGF-1, and IGFBP-1 were higher in trained middle-aged men when compared with sedentary 

control. Furthermore, their data indicated that acute ET in middle-aged men increased the 

activity of the GH/IGF-1 system [125]. In support of this notion that ET can active anabolic 

factors, Hansen et al. [124] found that plasma follistatin increased by 7-fold following 3 h of 

bicycling exercise, but only increased by 2-fold after one-legged knee extensor exercise. 

These data suggest that increase in plasma follistatin after ET seems to be dependent on 

several factors, including the intensity and duration of exercise and also the muscle mass 

recruited during the exercise bout [124]. In accordance, Sakamoto et al. [81] found that Akt 

activity significantly increased following both acute submaximal and maximal intensity ET. 

Increases in Akt activity were accompanied by increases in Akt Thr308 and Ser473 

phosphorylation [81]. Beneficial effects of ET on anabolic pathway may depend on the 
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frequency of training. In support of this notion, Pasini et al. [103] Investigated the effects of 8 

weeks ET and training frequency (3 (EX3) or 5 days/week (EX5)) on anabolic pathways in 

the skeletal muscle of old rats. Aging was associated with reduced protein levels of IRS-1 and 

p-mTOR in aged control rats relative to the young control group. In response to ET, EX3 

resulted in reduced IR expression and increased IRS-1 levels compared with old control rats. 

However, EX5 up-regulated not only IRS-1 and COX activity but also p-mTOR expression 

[103]. Despite the fact that the precise mechanisms of the age-associated loss of muscle mass 

is not yet clear, it seems that PGC-1a plays a central role in this process [103, 122]. It has 

been shown that ET stimulates upstream signaling pathways involved in PGC-1a activity, 

including AMPK, p38MAPK, SIRT1 and p-CREB [131]. Mitochondrial biogenesis induction 

by PGC-1a is mediated by the coactivation a large spectrum of transcription factors, 

including Nrf1, Nrf2 through Tfam, which regulates mitochondrial DNA replication (Figure 

6) [50]. Furthermore an increase in mitochondrial function and biogenesis following ET has 

inhibitory effect on apoptosis initiation, therefore may help to preserve muscle quality and 

aerobic capacity during aging [98, 122]. However, it has also been suggested that ET may be 

counted as an effective therapy for sarcopenia not just by its effects on mitochondrial 

regulation and adaptation, but also by reduced catabolic pathways such as FOXO3A, 

myostatin and increased anabolic pathways such as IGF-1 and follistatin [56, 103, 124]. 

 

 

 

 



46 
 

Mitochondria biogenesis. PGC-1α is known as a master regulator of mitochondria biogenesis 

witch its gene expression is mediated by other factors such as AMPK, Sirt1, CaMk, NO and 

p38. PGC-1α gene expression along with the expression of Nrf1 and Nrf2 induce the 

expression of Tfam, which is imported into mitochondria. Tfam regulates the expression of 

the mtDNA gene products, including proteins such as cytochrome c oxidase subunit I    

(COX I) and also are involved in ATP synthesis. 

 

1.3.4. Hormone therapy 

 

Several hormonal treatments have been proposed for the treatment of sarcopenia including 

GH, IGF-1, testosterone and estrogens [59, 61, 65, 70, 104, 135]. However, controversial 

findings have been reported in the literature related to the effectiveness of hormone therapy 

on sarcopenia. More recently Brioche et al. [59] Investigated 8 weeks of GH administration 

(2 mg/kg/day) on some cellular markers of sarcopenia in old rats. The result was interesting 

as GH treatment led to a significant, 100% increase of IGF-1 in old animals. GH 

supplementation also prevented increased protein and DNA oxidation in old rats. Levels of 

PGC-1a, Nrf1, and Cyto C as well as citrate synthase activity were significantly lower in old 

animals than in young ones. These decrements were completely prevented by replacement 

Figure 6. Diagrammatic summary of endurance exercise training signaling pathways involved in 

mitochondria function in healthy mammalian skeletal muscle cell 
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therapy with GH. In addition, in response to treatment with GH, the significant decrease in 

Akt phosphorylation and phosphorylation of p70S6K were completely recovered in the old 

muscles. GH treatment prevented the elevation of p38 phosphorylation in the muscle of old 

animals. Myostatin and MuRF-1 are well-known agents involved in proteolysis. GH 

treatment prevented age associated increases in Myostatin and MuRF-1 [59]. Moreover, GH 

supplementation has been shown to inhibit apoptosis in aged skeletal muscle [61]. Marzetti et 

al. [61] found that aging was associated with an elevation of the expression of TNF-R1 and 

cleaved caspase-8 in the EDL muscle in response to GH administration, both of which were 

reduced in aged rats. However, they did not find any reduction in the content of cleaved 

caspase-3 and apoptotic DNA fragmentation by the hormonal intervention. They then 

concluded that the protective effect of GH supplementation was an early step of the extrinsic 

pathway of apoptosis in the EDL muscle and did not translate into an effective mitigation of 

the actual apoptotic events. However, independently of caspase activation, GH administration 

was associated with increased apoptotic DNA fragmentation in the soleus muscle [61]. 

However, there are some studies which did not find beneficial effects of GH therapy on 

muscle strength or muscle mass [34, 40, 136]. Based on the literature, it seems that GH 

supplementation is more effective in patients with GH deficiency or reduced GH secretion 

than in those with normal hormonal state [34]. Failure of the regulation of natural GH 

secretion or the induction of GH-related insulin resistance could be possible reasons for the 

ineffectiveness of GH treatment in improving muscle mass and strength in the elderly [40]. 

Regardless of the proposed benefits of GH therapy, numerous side effects have been 

reported, including soft tissue edema, gynecomastia, orthostatic hypotension, and carpel 

tunnel syndrome, which pose serious concerns especially in older adults [22, 40, 137]  . 

Another potential hormone treatment against sarcopenia in women is estrogen 

supplementation or hormone replacement therapy (HRT). Despite the availability of reports 

on the effectiveness of hormone therapy [138, 139], however, some studies did not report any 

significant impact [65, 104]. For instance, it has been demonstrated that there was no 

difference in the prevalence of sarcopenia in healthy independent older women who were 

long-term estrogen users compared with older women who did not use estrogen [104]. It has 

been suggested that HRT may protect against the loss of muscle mass, which occurs in the 

premenopausal period [22]. Differences in estrogen dose used, the duration of the study, 

levels of physical activity, diet and medications can be an explanation for the contradictory 

results between studies [65]. 
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Testosterone is another hormone that has been widely studied for its effects on strength and 

muscle mass in young and old people. Nevertheless, previous studies have reported 

conflicting results [22, 24, 40, 45, 66, 71, 91, 135]. Circulatory levels of testosterone are 

correlated with sarcopenia, muscle mass and function as well protein synthesis. It has been 

demonstrated that the bioavailable testosterone and the testosterone precursor, DHEA both 

drop with aging [45]. The exact mechanisms by which testosterone protects against 

sarcopenia of aging is still unclear. However, it can be due to, at least in part, the suppression 

of myostatin and the non-canonical TGF-ß pathway through stimulation of Notch signaling, 

together with the inhibition of JNK mediated apoptosis. Indeed, it has been suggested that the 

activation of Akt together with the inhibition of JNK may be critical for testosterone-

mediated protection against sarcopenia during aging [71, 135]. In this regard, it has recently 

been reported that suppression of myostatin signaling by testosterone supplementation 

reduces the extent of myonuclear apoptosis in the gastrocnemius muscle of old mice, while 

improving muscle mass and fiber cross-sectional area [91]. In support of the anabolic 

contribution of testosterone, a number of studies have reported an increased IGF-1 protein 

levels following testosterone administration [24, 45]. However, it has been reported that 

numerous side effects are associated with testosterone treatment, including increased risk of 

cardiovascular problems and pedal edema [71, 114].  

 

1.3.4.1. IGF-1 

 

It is crucial that an appropriate treatment strategy should be able to maintain muscle mass, 

reduce muscle loss and stimulate muscle regeneration that can counteract muscle wasting 

[140]. At least three major molecular processes are involved in the regulation of skeletal 

muscle hypertrophy: (1) satellite cell activity; (2) gene transcription; (3) protein translation 

[141]. Among the different growth factors, IGF-1 has been shown to be involved in many 

anabolic pathways in skeletal muscle as well as during muscle regeneration [43].  

IGF-1, also known as somatomedin C, is a 70–amino acid [142] that is similar to insulin in 

structure, sharing 50% amino acid identity. However, unlike the insulin gene, the single-copy 

IGF-1 gene locus encodes multiple proteins with variable amino- and carboxyl-terminal 

amino acid sequences [140]. IGF-1 exists in at least two isoforms as a result of alternative 

splicing of the IGF1 gene. IGF1Ea or systemic IGF-1, which is produced in both liver and 
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muscle tissues and IGF1Eb (rodent form) and IGF1Ec (human form) also known as mechano 

growth factors (MGFs), which are produced generally by skeletal muscle. Unlike MGFs, 

IGF1Ea is glycosylated, and this modification protects it from proteolysis and confers a 

relatively long half-life [60]. Most IGF-1 circulates in blood bound to one of the six high-

affinity IGF binding proteins (IGFBPs; IGFBP1 to IGFBP6), which have been shown to 

modulate IGF-1 availability for action on tissues [125]. It has been shown that overexpression 

of any of these IGFBP isoforms is associated with decreased in IGF-1 action by inhibiting it’s 

binding to IGF-1R [62]. In tissues, IGFBPs can both decrease or increase IGF1 actions either 

by detaching IGF1 from the IGF1R or by releasing free IGF1 available for receptor binding 

[60].  

A wide variety of tasks and functions have been related to IGF-1, such as regulation of both 

proliferative and differentiation responses in muscle cells, promotion and regulation of 

muscle growth, improvement of sprouting and axonal growth and cell survival on motor 

neurons, along with the prevention of motor neuron death [43, 142]. The positive regulatory 

effects of IGF-1 on muscle growth act on several levels, including satellite cell activation, 

gene transcription, and protein translation [143]. IGF-1 affect both hyperplastic and 

hypertrophic processes in skeletal muscle. The hyperplastic effect results in the proliferation 

of muscle satellite cells, while the hypertrophic effect results in increased synthesis of 

contractile proteins by existing myonuclei [34]. 

It has been shown that serum and skeletal muscle concentrations of IGF-1 are lower in older 

adults [144] and this low circulating IGF1 bioactivity and abnormalities of IGF1 may be 

involved in age-related sarcopenia [60]. Several studies have demonstrated that IGF-1 

administration reduce the age-related loss of skeletal muscle mass and strength likely through 

positive effects on neuronal function and by the prevention of apoptotic death, stimulating 

axonal sprouting and repair of damaged axons, increasing muscle oxidative enzymes and 

fatigue resistance [34, 45, 60, 71, 80, 134, 145, 146]. 

The exact molecular mechanism by which IGF-1 administration improves muscle mass and 

attenuates age-related muscle atrophy is not completely understood yet. However, it has been 

demonstrated that IGF-1 /PI3K/Akt and IGF-1 /ERK1/2 MAPK are the two main signaling 

pathways that are involved in IGF-1-induced cell protection [146]. 

After binding IGF to its receptor, a conformational change occurs, leading to activation of 

IRS-1 [62]. Phosphorylated IRS-1 can activate PI3-K, leading to Akt phosphorylation, which 
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in turn enhances protein synthesis through mTOR and p70S6 kinase activation and also 

mediating the antiapoptotic effects of the IGF1R through phosphorylation and inactivation of 

BAD. Indeed, activation of Ras by phosphorylated IRS-1 or SHC leads to the stimulation of 

the RAF-1/MEK/ERK pathway and downstream nuclear factors, leading to the induction of 

cell proliferation [60]. 

IGF-1 treatment can also increase protein synthesis and reduce protein degradation via 

downregulation of ubiquitin ligases. Activation of PI3K/Akt in turn leads to the 

phosphorylation and inactivation of FOXO transcription factors resulting in the reduction of 

MuRF1 and atrogin-1 expression thereby, a reduced protein degradation by the 26S 

proteasome in skeletal muscle [97] [147]. 

Taken together, it seems that the effectiveness of hormone therapy such as GH, estrogen, 

testosterone and IGF-1 on age-related loss of skeletal muscle mass is explained by the 

decreased the rate of protein degradation than increasing protein synthesis due to the 

modulation of IGF-1/FOXO, IGF-1/NFkB and IGF-1/ERK1/2 signaling pathways.  

 

1.3.5. Combination of exercise and nutritional and pharmacological supplementation 

 

It seems that exercise in combination with nutritional and pharmacological intervention is 

more effective against sarcopenia [32]. A wealth of data exists which demonstrate beneficial 

effects of the combination of exercise and nutritional interventions on skeletal muscle 

adaptation in older person [39, 46, 61, 66, 134]. For instance, it has been found that combined 

wheel running and mild CR significantly preserved a higher muscle mass/body mass ratio 

and fiber CSA [39]. Guo et al. [66] demonstrated that 2 months of testosterone administration 

together with low-intensity physical training (T/PT) improved grip strength, spontaneous 

movements, and respiratory activity in old mice. T/PT was associated with increased 

mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. 

Furthermore, 2 months of T/PT led to an increased expression of markers for mitochondrial 

fission-and-fusion and mitophagy and reduced tissue oxidative damage, while also improved 

muscle quality [66]. In contrast, Li et al. [134] have reported that there were no significant 

increases in Akt-1 and p70 S6K phosphorylation following an acute bout of ET and IGF-1 

injection in old mice [134]. However, the combination of exercise and IGF-1 has shown a 

modest effect on reducing aged-related wasting of skeletal muscle [148]. More recently, 
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McMahon et al. [148] investigated the effect of long term wheel-running on the prevention of 

sarcopenia in IGF-1Ea overexpressing transgenic mice compared with wild-type. Their 

results demonstrated that the combination of IGF-1 and exercise prevented the reduced mass 

of the quadriceps muscles in 28 months-old mice compared with wild type. However, there 

was no improvement in muscle function as assessed by grip strength [148]. 
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1.4. Summary of introduction  
 

Along with increased longevity, the prevalence and cost of sarcopenia are likely to rise [9]. It 

is associated with elevated risk of cardiac, pulmonary, and metabolic disease processes, 

which further contributes to the socioeconomic burden [126]. This global aging phenomenon 

has led to an increased morbidity and greater need for hospitalization and/or 

institutionalization. Healthy style of life is essential for older people to remain independent 

and to continue to actively take part in family and community life [14].  Developing new 

therapies and strategies to prevent and treat sarcopenia not only will help to improve the 

quality of life for patients, but also will help to reduce the economic and productivity burdens 

for society in general [9, 80].  

In this regard, in order to provide further insight into the development of more effective 

therapy, it is important to explore the mechanism and etiology of sarcopenia [42]. Among 

factors, free testosterone, physical activity, cardiovascular disease, IGF-1 in men and total fat 

mass and physical activity in women are significantly associated with muscle mass [149]. In 

spite of the documented benefits of aerobic exercise on cardiovascular and metabolic health 

for older adults, the influence of this type of exercise on skeletal muscle mass and function is 

less understood [128]. Furthermore, comparison of master athletes with sedentary controls 

demonstrated that training may not be sufficient to prevent skeletal muscle loss in older 

adults [46]. 

Therefore, it seems that factors, such as nutrition in conjunction with appropriate physical 

activity can help attenuate the age related physical and muscle mass decline and maintain 

quality of life [44]. 

 



53 
 

2. Objectives 
 

As mentioned in the previous chapter, reduced systemic anabolic hormone levels, especially 

IGF-1 and reduced mitochondrial efficiency with aging are two potential factors involved in 

sarcopenia. Despite strong evidence for the effectiveness of RT, the effect of ET on the 

prevention and reduction of age-related muscle loss is still not well understood. Furthermore, 

available data from previous studies on hormone therapy is ambiguous. Although, it has been 

shown that the combination of exercise and hormone supplementation is more effective than 

either alone in attenuating muscle atrophy.  

In our study, we aimed to elucidate the effects of endurance training with or without IGF-1 

administration on four of the main mechanisms, involved in the onset and progression of 

sarcopenia including, decreased rate of protein synthesis, increased protein degradation, 

alteration in mitochondrial biogenesis and increased apoptotic signaling. 

It was hypothesized that endurance exercise training alone and in combination with IGF-1 

treatment has beneficial effects on age-related muscle atrophy, and in general can attenuate 

the process of sarcopenia. 

The following assumptions were made:  

H1. Aging negatively influences the cellular markers involved in sarcopenia.  

H2. Endurance exercise training positively influences the cellular markers involved in 

sarcopenia.  

H3. IGF-1 administration enhances positive effects of endurance exercise on the cellular 

markers involved in sarcopenia.  
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3. Methods 
 

3.1 Subjects 
 

Fifteen young (3 months old) and 15 old (26 months old) male Wistar rats were used in the 

study.  We chose 26-month-old rats because previous studies have reported that sarcopenia is 

evident at 22 months age in this species [59, 150]. Subjects then were assigned to one of the 

following groups: young control (YC), young exercised (YE), young exercised and IGF-1-

treated (YEI), old control (OC), old exercised (OE), and old exercised and IGF-1-treated 

(OEI).  

The investigation was carried out according to the requirements of The Guiding Principles for 

Care and Use of Animals of the European Union and approved by the local ethics committee.  

 

3.2 Exercise protocol 
 

Exercised rats were introduced to treadmill running for 3 days; then for the next 2 weeks the 

running speed was set at 10 m/min, with a 5% incline for 30 min/day, 5 days per weeks. The 

running speed and duration of the exercise were gradually increased to 60% of VO2 max of 

the animals. Therefore, on the last week of the 6-week training program, young animals ran at 

22 m/min, on a 10% incline, for 60 min, whereas old animals ran at 13 m/min, on a 10% 

incline for 60 min (Figure 7). At the end of the study the animals were anesthetized with 

intraperitoneal injections of ketamine (50 mg/kg) and were sacrificed. This occurred two days 

after the last exercise session, to avoid any metabolic effects of the final run (Figure 8). 

Quadriceps muscle was carefully excised and stored at -80 ◦C. 

 

 

 



55 
 

  

 

 

Figure 7. The figures represent Speed, time and incline (ascent) of 6 weeks of endurance 

training on treadmill in young and old rats 
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OC (old control), YC (young control), OE (old exercise), YE (young exercise), OEI (old 

exercise and IGF-1 treatment), YEI (young exercise and IGF-1 treatment) and W (week). 

 

3.3 IGF-1 administration 
 

3.3.1 Alzet pump 

 

An Alzet pump (Alzet mini-osmotic pump model 2002. Durect Corporation #0000296) was 

inserted subcutaneously in all animals. Alzet pump operate via an osmotic pressure difference 

between a compartment within the pump, called the salt sleeve, and the tissue environment in 

which the pump is implanted. The high osmolality of the salt sleeve causes water to flux into 

the pump through a semipermeable membrane, which forms the outer surface of the pump. 

As the water enters the salt sleeve, it compresses the flexible reservoir, displacing the test 

solution from the pump at a controlled, predetermined rate. Because the compressed reservoir 

cannot be refilled, the pumps are designed for single-use only. The rate of delivery by an 

Alzet pump is controlled by the water permeability of the pump’s outer membrane. Thus, the 

delivery profile of the pump is independent of the drug formulation dispensed. Drugs of 

Figure 8. Schematic design of the study protocol 
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various molecular configurations, including ionized drugs and macromolecules, can be 

dispensed continuously in a variety of compatible vehicles at controlled rates. The molecular 

weight of a compound, or its physical and chemical properties, has no bearing on its rate of 

delivery by Alzet pumps. The volume delivery rate of Alzet pumps is fixed at manufacture. 

Alzet osmotic pumps are available with a variety of delivery rates between 0.11 and 10 µL/hr 

and delivery durations between 1 day and 6 weeks. While the volume delivery rate of the 

pump is fixed, different dosing rates can be achieved by varying the concentration of agent in 

the solution or suspension used to fill the pump reservoir. 

A more complete and technical explanation of the operation of Alzet osmotic pumps can be 

found in the http://www.alzet.com/. 

 

3.3.2. IGF-1 supplementation 

 

In the last 2 weeks of the study, treated animals received 5 μg/kg per day, 0.5 μL/hr IGF-1 

(Sigma #13769), whereas non-treated animals received saline via the pumps. With the help of 

the Alzet pumps, the 2-week supplementation of IGF-1 or saline could be maintained at 

constant flow, thus avoiding daily injections and their possible disturbance of behavioral and 

cognitive functions of the animals. 

3.4. Tissue preparation 

 

Frozen vastus lateralis samples were weighed (~100 mg) and homogenized (1:10 w/v) in ice-

cold buffer (20 mM Tris–HCl pH 8, 137 mM NaCl, 2% NP-40, 10% glycerol) supplemented 

with phosphatase and protease inhibitors. The homogenates were incubated at 4 °C for 30 

Figure 9. Schematic representation of an Alzet osmotic pump 

http://www.alzet.com/
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min, and then centrifuged at 12,000 g for 20 min at 4 °C. Then, the supernatant was collected 

and Bradford assays were used to determine supernatant protein concentrations. Proteins 

were diluted in 2× SDS sample buffer (1:1) and then heated to 95°C for 5 minutes. 

 

3.5. Western blot analysis 
 

Ten to 20 μg of protein were electrophoresed on 6–15% vol/vol polyacrylamide sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels. Proteins were 

electrotransferred onto polyvinylidene fluoride (PVDF) membranes. The membrane was 

blocked with 5% milk–Tris-buffered saline with 0.1% tween-20 solution and then incubated 

with a primary antibody overnight at 4°C. Primary antibodies are described in Table 1 and 

were diluted 1:500 to 1:1000 with 5% milk–Tris-buffered saline with 0.1% tween-20. Blots 

were incubated with horseradish peroxidase–conjugated secondary antibody diluted 1:3000 

with 5% milk–Tris-buffered saline with 0.1% tween-20. After incubation with the secondary 

antibody, membranes were washed repeatedly and then were incubated with 

chemiluminescent substrate (Thermo Scientific, SuperSignal West Pico Chemiluminescent 

Substrate), and protein bands were visualized on X-ray films. The bands were quantified by 

ImageJ software and normalized to B-actin, which served as an internal control. 

 

3.6. Measurement of IGF-1 level 

 

After sacrificing the animals, blood was collected, supercharged ethylenediaminetetraacetic 

acid (EDTA) was added, and the samples were centrifuged at 3000 × g, for 10 min at 4°C. 

Plasma was separated and kept at −80°C. A Quantikine Mouse/Rat IGF-1 Assay Kit (R&D 

Systems, cat. no. MG100) was used to detect IGF-1 levels according to the description of the 

supplier. Briefly this assay employs the quantitative sandwich enzyme immunoassay 

technique. A monoclonal antibody specific for rat IGF-1 has been pre-coated onto a 

microplate. Standards, control, and samples were pipetted into the wells and any rat IGF-1 

present was bound by the immobilized antibody. After washing away any unbound 

substances, an enzyme-linked polyclonal antibody specific for mouse/rat IGF-1 was added to 

the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate 
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solution was added to the wells. The enzyme reaction yielded a blue product that turned 

yellow when the Stop Solution was added. The intensity of the color measured was in 

proportion to the amount of rat IGF-1 bound in the initial step. The sample values were then 

read off the standard curve. The optical density of each well were determined within 30 

minutes. microplate reader and wavelength was set to 450 nm and 570 nm respectively. 

 

Table 1. Description of primary antibodies used in the study 

Antibody/antigen Dilution ratio company Catalog number 

Follistatin 1: 500 Santa Cruz SC-30194 

Akt 1: 1000 Cell signaling #9272S 

p-Akt (Ser473) 1: 1000 Cell signaling #9271S 

mTOR 1: 500 Santa Cruz SC-8319 

pmTOR (Ser2448) 1: 500 Cell signaling #5536 

ERK1/2 1: 1000 Cell signaling #9102 

pERK1/2 (Thr202/Tyr204) 1: 500 Cell signaling #9106 

Myostatin (GDF-8) 1: 500 Santa Cruz SC-6884 

Ubiquitin 1: 1000 Cell signaling #3936 

MuRF1 1: 500 Santa Cruz SC-32920 

MuRF2 1: 500 Santa Cruz SC-49457 

PSMA6 1: 1000 Cell signaling #2459 

PGC-1α 1: 1000 Millipore ST1202 

SIRT1 1: 500 Santa Cruz SC-15404 

SIRT3 1: 500 Sigma S4072 

Nrf2 1: 500 Santa Cruz SC-722 

Cyto C 1: 1000 Santa Cruz SC-13560 

Cox 4 1: 500 Santa Cruz SC-69359 

TNF-α 1: 500 Santa Cruz SC-1350 

p53 1: 500 Santa Cruz SC-99 

Bcl-2 1: 500 Santa Cruz SC-492 

Bax 1: 500 Santa Cruz SC-493 
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3.7. Measurement of ROS level 

 

Intracellular oxidant and redox-active iron levels were estimated using modifications of the 

dichlorodihydrofluorescein diacetate (H2DCFDA) staining method. The oxidative conversion 

of stable, nonfluorometric DCFDA to highly fluorescent 2′7′-dichlorofluoorescein (DCF) was 

measured in the presence of esterases, as previously reported [151]. This assay approximates 

levels of reactive species, such as superoxide radical, hydroxyl radical, and hydrogen 

peroxide. The method has been widely used in the literature but does have the problem of not 

being particularly specific, and results can be strongly affected by release of labile iron or 

copper [152]. Briefly, the H2DCFDA (Invitrogen-Molecular Probes #D399) was dissolved to 

a concentration of 12.5 mM in ethanol and kept at −80 °C in the dark. The solution was 

freshly diluted with potassium phosphate buffer to 125 μM before use. For fluorescence 

reactions, 96-well, black microplates were loaded with 150 ul of 50 mM potassium phosphate 

buffer (13.969 g K2HPO4 + 2.71 g KH2PO4 in distilled water up to 200 ml, pH 7.4) to a 

final concentration of 152 μM/well. Then eight μl diluted tissue homogenates and 50 μl 125 

μM dye (20 ul 12.5 mM H2DCFDA in 1980 ul 50 mM potassium phosphate buffer) were 

added to achieve a final dye concentration of 25 μM. The change in fluorescence intensity 

was monitored every five minutes for 30 minutes with excitation and emission wavelengths 

set at 485 nm and 538 nm (Fluoroskan Ascent FL) respectively. Data obtained after 15 min 

were used. The fluorescence intensity unit was normalized to the protein content and 

expressed in relative unit production per minute. 

 

3.8. Statistical analyses 
 

Statistical significance was assessed by the IBM SPSS program version 21. Data were tested 

with Shapiro-Wilk’s W normality test. Parametric data were analyzed by one-way ANOVA, 

followed by Tukey’s post hoc test. Kruskal-Wallis ANOVA followed by Mann-Whitney U 

test was applied to evaluate the differences in non-parametric results in case of those 

variables where post-hoc analysis was required. The significance level was set at p < 0.05. 
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4. Result 
 

4.1 Cellular markers involved in protein synthesis 
 

The IGF-1/Akt and mTOR pathways are two evolutionarily conserved pathways that play 

critical roles in regulation of cell proliferation, survival, and energy metabolism. Moreover, it 

is possible that the increased IGF expression might contribute to skeletal muscle hypertrophy 

induced by follistatin [153]. Indeed, the IGF-ERK1/2 pathway can stimulate several 

substrates, such as p90RSK (p90 ribsosomal S6 kinase), resulting in the activation of 

transcription factors and the ribosomal subunit S6. ERK1/2 may also increase activity of 

kinases associated with protein translation, such as MAPK-interacting kinase 1 (Mnk 1) and 

its downstream substrate, eIF4E [39]. Therefore, we measured the IGF-1 level and 

phosphorylated and total protein content of Akt, mTOR, ERK1/2 and follisatin. 

The levels of circulating IGF-1 decreased with aging. There was significant increase in OEI 

compared with OC group (Figure 10). The expression levels of follisatin was also lower in 

OC vs. YC (p<0.05) while both exercise and IGF-1 treatment significantly increased (p<0.05) 

follistatin levels in OE and OEI (Figure 11). Total protein content of Akt and pAkt was 

higher (p<0.05) in OC vs. YC but there was no effect of exercise and IGF-1 interactions 

among groups (Figure 12B and Figure 12A respectively).  The results showed that protein 

levels of mTOR and pmTOR didn’t change with age, however, exercise resulted in an 

increase (p<0.05) in pmTOR among YE vs. YC, while significantly increases were observed 

in both mTOR and pmTOR levels (p<0.05 and p<0.01 respectively) following IGF-1 

supplementation in OEI vs. OC (Figure 13B and Figure 13A respectively). Nevertheless, 

aging and exercise training didn’t have significant effect on the ratio of pAkt: Akt (Figure 

12C) and pmTOR: mTOR (Figure 13C), however, IGF-1 treatment led to a significant 

increase (p<0.05) of pmTOR: mTOR in OEI compared to OE (Figure 13C), whereas YEI 

showed a significant reduction (p<0.01) compared to YE flowing IGF-1 administration 

(Figure 13C). Old subject showed lower level (p<0.05) of pERK1/2 (Figure 14B). Exercise 

training decreased the protein content of ERK1/2 (p<0.01) in YE vs. YC, while IGF-1 

treatment led to markedly reduction in OE and OEI (p<0.05 and p<0.01 respectively) (Figure 

14A). Aged subjects had significant increase (p<0.05) in pERK1/2: ERK1/2, while no effect 

of exercise and IGF-1 treatment was observed despite of a tendency for a decrease in OE and 

OEI, however, this ratio was lover (p<0.01) in YEI vs. YC (Figure 14C).  
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

Figure 10. Effect of age, exercise and combination of exercise and IGF-1 administration on 

plasma level of IGF-1 

Figure 11. Effect of age, exercise and combination of exercise and IGF-1 administration on 

follistatin protein content 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC (old 

control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± standard 

error (SE) for 5 animals per group. (*) p < 0.05. 

A 

B 

C 

Figure 12. Effect of age, exercise and combination of exercise and IGF-1 administration on 

levels of pAkt (A), total Akt (B) and pAkt: Akt ratio (C) 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

A 

B 

C 

Figure 13. Effect of age, exercise and combination of exercise and IGF-1 administration on 

levels of pmTOR (A), total mTOR (B) and pmTOR: mTOR ratio (C) 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

 

A 

B 

C 

Figure 14. Effect of age, exercise and combination of exercise and IGF-1 administration on 

levels of pERK1/2 (A), total ERK1/2 (B) and pERK1/2:ERK1/2 ratio (C) 
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4.2 Cellular markers involved in protein degradation 
 

In recent years there has been a significant interest in growth and differentiation factor-8 

(GDF-8), or myostatin, which functions as a powerful negative regulator of muscle growth 

[154]. On the other hand, the ubiquitin proteasome system is one of the major pathways that 

regulates muscle protein degradation, playing a central role in controlling muscle size. 

MuRF1 and MuRF2 and proteasome subunits have been proposed to regulate protein 

degradation and gene expression in muscle tissues [80, 155, 156]. 

Therefore, we measured the expression levels of Myostatin, Ubiquitination, MuRF1, MuRF2 

and PSMA6. 

Myostatin expression levels was significantly higher in OC vs. YC (p<0.05) and it was lower 

(p<0.01) in YEI then YC (Figure 15). Ubiquitinated level was higher in OC vs. YC, whereas 

exercise and IGF-1 administration led to a significant increase in YE and YEI (p<0.05 and 

p<0.01 respectively) (Figure 16).  Expression levels of MuRF1 (Figure 17) and MuRF2 

(Figure 18) was significantly higher in OC then YC (p<0.05). Exercise training decreased 

MuRF1 and Murf2 levels in OE (p<0.05). Exercise also decreased MuRF2 protein content in 

YE (p<0.05) (Figure 18). Administration of IGF-1 also decreased MuRF2 levels in OEI 

(p<0.01) compared to OC (Figure 18) and increased (p<0.05) MuRF1 levels in YEI 

compared to YE (Figure 17). PSMA6 showed an increased with aging (p<0.05) and exercise 

training significantly increased its protein content both in YE and OE (p<0.05). IGF-1 

supplementation led to an evident increase (p<0.01) in YEI (Figure 19). 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

Figure 15. Effect of age, exercise and combination of exercise and IGF-1 administration on 

Myostatin protein content 

Figure 16. Effect of age, exercise and combination of exercise and IGF-1 administration on 

ubiquitinated protein content 

Ubiquitinated 

protein 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

Figure 17. Effect of age, exercise and combination of exercise and IGF-1 administration on 

MuRF1 protein content 

Figure 18. Effect of age, exercise and combination of exercise and IGF-1 administration on 

MuRF2 protein content 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

 

4.3 Cellular markers involved in mitochondria biogenesis 
 

Loss of mitochondrial functional integrity is centrally involved in muscle degeneration during 

aging and other atrophying conditions [55]. In particular, oxidative stress-induced damage to 

mtDNA impairs mitochondrial function, which can lead to further increases in ROS 

production and exacerbate the intracellular ROS-induced damage [157].  Therefore, we 

measured the ROS levels and expression levels of SIRT1, PGC-1a, SIRT3, Cyto C, Cox 4 

and Nrf2. 

OC showed elevated levels (p<0.05) of ROS compared to YC. There was no effect of 

exercise and IGF-1 treatment on ROS level (Figure 20). There was no difference between 

groups in PGC-1α and SIRT1 protein contents (Figure 21 and Figure 22 respectively). SIRT3 

level was significantly lower (p<0.01) in OC, while markedly increased SIRT3 protein 

content was observed in OE and OEI (p<0.05 and p<0.01 respectively) following exercise 

and IGF-1 administration (Figure 23). Cyto C and Cox 4 protein contents decreased with age 

(p<0.05) whereas endurance training led to a significant increase (p<0.05) of both Cyto C and 

Figure 19. Effect of age, exercise and combination of exercise and IGF-1 administration on 

PSMA6 protein content 
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Cox 4 in OE (Figure 24 and Figure 25 respectively). Nrf2 was also lower (p<0.01) in OC 

compared to YC, while exercise and IGF-1 treatment resulted an increase (p<0.05 and p<0.01 

respectively) in OE and OEI (Figure 26).  

 

 

 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

 

 

 

Figure 20. Effect of age, exercise and combination of exercise and IGF-1 administration on 

ROS level 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. 

Figure 22. Effect of age, exercise and combination of exercise and IGF-1 administration on 

SIRT1 protein content 

Figure 21. Effect of age, exercise and combination of exercise and IGF-1 administration on 

PGC-1α protein content 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

Figure 23. Effect of age, exercise and combination of exercise and IGF-1 administration on 

SIRT3 protein content 

Figure 24. Effect of age, exercise and combination of exercise and IGF-1 administration on   

Cyto C protein content 



73 
 

 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

 

 

Figure 25. Effect of age, exercise and combination of exercise and IGF-1 administration on   

Cox 4 protein content 

Figure 26. Effect of age, exercise and combination of exercise and IGF-1 administration on    

Nrf 2 protein content 
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4.4 Cellular markers involved in apoptosis 
 

Available evidence supports the hypothesis that excessive myonuclear apoptotic elimination 

may drive the onset and progression of sarcopenia. The extrinsic pathway is initiated by the 

interaction of cell surface death receptors (e.g. tumor necrosis factor receptor, TNF-R) with 

their ligands (e.g. TNF-α) [91]. Recent studies suggest a fundamental role for p53 in 

organismal senescence. Several mouse models that display chronic p53-activation or chronic 

cell stress pathway activation display premature aging associated with pronounced tissue 

atrophy [158]. A critical event in mitochondrial-driven apoptosis is the formation of 

permeable membrane pores, regulated by the balance between competing anti-apoptotic Bcl-

2 family proteins, such as Bcl-2 and pro-apoptotic proteins, including Bax [159, 160]. 

Therefore, we measured the expression levels of TNF-α, p53, Bcl-2 and Bax. Also the ratio 

of Bax to Bcl-2 as an apoptotic index was calculated. 

There was no effect of age on TNF-α protein content, but administration of IGF-1 led to a 

significant reduction (p<0.05) in OEI vs. OC (Figure 27). p53 was higher (p<0.05) in OC 

than YC. Although there was a tendency of reduced p53 levels following exercise and IGF-1 

treatment, however, significant decrease (p<0.05) was only observed in YEI (Figure 28). Bcl-

2 protein content significantly decreased with aging (p<0.05), but IGF-1 supplementation 

markedly enhanced (p<0.05) its levels in OEI (Figure 29). Unlike in old subjects, YE and 

YEI showed a significant lowering (p<0.05 and p<0.01 respectively) of Bcl-2 levels in 

response to exercise and IGF-1 treatment (Figure 29). Bax protein content was obviously 

higher (p<0.05) in OC vs. YC. There was no significant effect of exercise and IGF-1 

supplementation, in spite of the tendency for a decrease in OE and OEI (Figure 30). The ratio 

of Bax to Bcl-2 as an indicator of apoptotic condition inside the cell, however, was 

significantly higher (p<0.05) in OC compared with YC. This ratio markedly decreased 

(p<0.05) following IGF-1 administration in OEI compared with OC (Figure 31). 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

Figure 27. Effect of age, exercise and combination of exercise and IGF-1 administration on 

TNF-α protein content 

Figure 28. Effect of age, exercise and combination of exercise and IGF-1 administration on p53 

protein content 



76 
 

  

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

   

YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05. 

- 

Figure 29. Effect of age, exercise and combination of exercise and IGF-1 administration on   

Bcl-2 protein content 

Figure 30. Effect of age, exercise and combination of exercise and IGF-1 administration on Bax 

protein content 
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YC (young control); YE (young exercised); YEI (young exercised IGF-1 treated); OC 

(old control); OE (old exercised); OEI (old exercised IGF-1 treated). Values are means ± 

standard error (SE) for 5 animals per group. (*) p < 0.05; (**) p < 0.01. 

Figure 31. Effect of age, exercise and combination of exercise and IGF-1 administration on 

apoptotic index (Bax: Bcl-2 ratio) 
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5. Discussion  
 

Sarcopenia, often defined as the age-related decrease in lean body mass, has become a topic 

of significant investigation since it affects so many people, healthy and ill, and utilizes 

significant medical resources. The direct costs approached $18.5 billion in the United States 

in 2000; by comparison, the annual cost of osteoporotic fractures in 1995 was $16.3 billion 

[161]. The precise reasons for sarcopenia are not well understood, however, the general age-

related decrease in hormonal and nervous system capacity are proposed as contributors with 

interactions between many systemic and local factors at the tissue level [162]. The purpose of 

this study was to examine age-related changes in cellular markers involved in sarcopenia in 

response to endurance exercise with or without IGF-1 treatment and to highlight some of the 

potential underlying factors that appear to contribute to the skeletal muscle wasting with 

aging. 

 

5.1 Aging negatively affected cellular markers involved in sarcopenia 

  

Maintaining muscle mass is achieved by balance between protein synthesis and protein 

degradation. An increase in muscle mass can come about due to either an increase in protein 

synthesis or a decrease in degradation, while a decrease in muscle mass can occur as a result 

of decreasing protein synthesis or increasing protein degradation [80]. Two major signaling 

pathways control skeletal muscle growth: the IGF1–Akt/PKB–mTOR pathway acts as a 

positive regulator of muscle growth, and the myostatin–Smad3 pathway acts as a negative 

regulator [72]. 

Our result demonstrated that aging was associated with a reduced level of IGF-1 and 

expression level of follistatin -two important protein synthesis stimulators in mammalian 

skeletal muscle- in old rat.  

IGF-1 acts mainly through three downstream signals that are mediated by PI3K-Akt. Each 

pathway plays a different role in various aspects of muscle growth. In the first pathway, IGF-

1 activates MAPK through PI3K-Akt, which eventually leads to the proliferation of 

myoblasts and satellite cells. PI3K-Akt-mTOR-P70S6K is the second pathway involving 

IGF-1 and its signals are transduced mainly through PI3K-Akt and mTOR to P70S6K. In the 
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third pathway, the activation of Akt inhibits the activities of GSK-3ß, thereby promoting the 

synthesis of specific proteins [163]. In accordance with our findings, age-related changes in 

systematic and local IGF and their binding proteins has been reported in human [164-167] 

and rat [168, 169]. Follistatin is also essential for skeletal muscle development and growth 

[170] and it is possible that the increased IGF expression might contribute to skeletal muscle 

hypertrophy induced by follistatin [153]. Hamrick et al. (Hamrick et al., 2012) reported that 

follistatin levels decreased by ~30% in mouse EDL with age. They then concluded that age-

associated loss of muscle mass in the predominantly fast-twitch EDL muscle may be due, in 

part to declining levels of follistatin [171]. Our result also demonstrated that the amount of 

Akt and pAkt was higher in old animals, while no effect of aging observed for the amount of 

mTOR and pmTOR. The phosphorylated and total amount of Akt and mTOR may be varied 

among muscle types in response to aging. Paturi et al. (Paturi et al., 2010) studied the effects 

of aging on muscle mass in the F344BN rat model. They compared Akt and mTOR in the 

slow soleus and fast extensor EDL muscles of 6, 30 and 36-month male rats. Their results 

were interesting. In soleus muscle the abundance of Akt protein was lower in 36-month-old 

relative to that observed in 6-month-old animals. However, compared to 6-month-old male 

animals the amount of p-Akt (Ser 473), p-mTOR (Ser 2448) were 47% and 28% lower and p-

Akt (Thr 308) was 38% higher in 36-month-old male animals. In the EDL muscle, relative to 

6-month-old male animals, the amount of Akt, mTOR, p-Akt (ser 473) and p-mTOR (Ser 

2448) were 38%, 182%, 73% and 91% higher in the 36-month-old male animals [172]. A 

decrease in IGF-1 mRNA by 45%, along with a 2.5-fold increase in total Akt, but not 

phosphorylated Akt, has been reported in older males compared to the young subjects [19]. 

This increase in phosphorylation and expression of Akt protein in muscle seems to be a 

compensatory response to aging. Akt plays a number of roles that may be important in 

sarcopenia. These roles can be included at least due to the decrease in apoptosis and protein 

degradation in skeletal muscle by increasing phosphorylation and inhibition of the pro-

apoptotic protein Bad and FOXO transcription factors, respectively [39]. The mTOR 

signaling pathway is also important for translation initiation and is therefore critical for 

muscle protein synthesis. One mechanism that activates mTOR signaling is the IGF-1/PI3k/ 

Akt pathway. Downstream effectors of mTOR signaling include p70s6k, 4E-BP-1, eIF-4E, 

and S6K [45]. It has been reported that a reduced amount of mTOR, pmTOR, S6 ribosomal 

protein are present in aged rodents, consequently impairing mTOR signaling and mRNA 

translation. Therefore, impairment in protein synthesis in aged muscle is evident [173-175]. 

However, there are some studies, which reported increased amounts of phosphorylated 
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mTOR and p70S6K in the tibialis anterior and increased level of phosphorylated p70S6K, 

eukaryotic initiation factor 2 subunit B (eIF2B) activity in gastrocnemius muscle of senescent 

rats [176, 177]. Our finding showed that there was no difference in phosphorylated and total 

expression of mTOR protein between old and young subject. Therefore, aging did not 

commonly modulate the PI3-K/Akt/mTOR-linked molecules in skeletal muscle under 

sedentary conditions [77], suggesting that other pathways, such as the MAPK signaling 

pathway should also be considered. MAPK signaling transduction pathway acts in a wide 

variety of physiological and pathophysiological cellular processes including cell proliferation, 

differentiation, apoptosis, migration, inflammation, metabolic disorders and diseases. In 

skeletal muscle, it plays a critical contribution in muscle fiber specialization, muscle mass 

preservation, damage-induced muscle regeneration and muscle diseases. MAPK pathway 

consists of at least 4 subfamilies that include ERK 1/2, p38a/ß/?/ d MAPK, JNK 1/2/3, and 

ERK5 [178]. The ERK1/2 pathway is involved in activation of several substrates, such as p90 

ribosomal S6 kinase (p90RSK), leading to the activation of transcription factors. ERK1/2 can 

also activate kinases associated with protein translation such as Mnk 1 (MAPK-interacting 

kinase 1) and its downstream substrate, eukaryotic initiation factor 4E (eIF4E) [39]. We 

found that baseline content of ERk1/2 was lower in aged rats whereas no difference was 

observed in pERK1/2 between the young and old groups, however, activity of ERK1/2 

(pERK1/2: ERK1/2 ratio) was higher in aged rats compared with their young counterparts. 

Recently, a study investigated activation and total protein content of MAPK signaling 

cascade proteins (ERK 1/2, p90RSK, Mnk 1, eIF4E, p38 MAPK, JNK/SAPK, and MKP 1) at 

rest and following exercise in sedentary young and old men. The results demonstrated a 

higher baseline levels of ERK 1/2, p90RSK and Mnk 1 in the old men compared with young 

counterpart [179].  

Among the several pathways which are participated in the pathogenesis of muscle mass 

maintains, MAPKs is considered for having an important role. MKP-1 is a phosphatase 

which by dephosphorylating acts as an inhibitor for MAPKs. It has been found that 

overexpression of MKP-1 in skeletal muscle fibers induced profound muscle fiber atrophy 

possibly through the ubiquitin-proteasome pathways. This anti-atrophic effect of MAPKs 

may be through ERK1/2 signaling pathway. It is believed that ERK1/2 pathway counteracts 

muscle wasting through enhanced protein synthesis by its control of ribosomal RNA gene 

expression [178]. These findings may explain the higher baseline levels of ERK 1/2 old rat 
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from the current study, possibly as a compensatory response of skeletal muscle along with 

aging. 

As mentioned above, age related increased in protein degradation in skeletal muscle plays an 

important role in sarcopenia [77, 87]. We found much higher level of Myostatin, 

ubiquitination, MuRF1, MuRF2 and proteasome subunit PSMA6 expression in old subjects 

compared with young ones. Our finding are in line with previous studies which reported 

increasing TGF-ß/myostatin pathways [19, 135, 180-182] and ubiquitin proteasome system 

activity [100, 177, 183, 184] in old humans and animals. Myostatin and TGF-ß are generally 

located in an inactive form in the muscle extracellular matrix and after activation can bind to 

their receptors resulting in activation of the Smad2/3 and TAK1/p38 MAPK signal 

transduction cascades. Smad2 and Smad3 are transcription factors which are able to bind 

DNA and directly regulate the expression of target genes. Smad2/3 can also bind to the 

FOXO family to regulate gene expression. In addition, myostatin signaling can suppress the 

IGF-1/PI3K/Akt axis and reduce p70S6K activation [80]. 

The UPS is mostly responsible for the degradation of misfolded proteins, as well as long-

lived proteins. The substrate specificity of the ubiquitin conjugation cascade is mediated by 

hundreds of E3 ubiquitin protein ligases. MuRF proteins MuRF1, -2, and -3 comprise a 

subfamily of the RING-finger E3 ubiquitin ligases that are expressed specifically in cardiac 

and skeletal muscle. The main target of MuRF1 is titin at the M-band of the sarcomere that 

has an important role in maintaining the stability sarcomeric M-line region. MuRF2 can also 

bind to the titin kinase domain and is contributed in the serum response factor signal 

transduction pathway [185]. Since it has been demonstrated an enhanced proteolysis by the 

UPS in aged skeletal muscle, which may enhance their capacity to eliminate misfolded 

proteins, hence they appear to be involved in the sarcopenia [183]. Nevertheless, it should be 

noted that not all studies have reported significant age-related differences in Myostatin and 

MuRF1in protein and mRNA expression at baseline [19, 186-188]. One possible reason for 

these inconsistency can be due to differences in the age of the subjects between the studies 

that can be related to the degree of muscle mass loss, because individuals >80 years old have 

a greater prevalence of sarcopenia, and more severe muscle atrophy compared to individuals 

only a decade younger [39]. 

There are a number of lines of evidence supporting the hypothesis that mitochondrial 

dysfunction is a characteristic of human aging in skeletal muscle [51]. The mechanism for 
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age-associated decline of mitochondrial biogenesis and dysfunction is still unknown and 

under intense investigation [131]. Currently, it is generally accepted that ROS play a primary 

role in the aging process, mitochondrial production of ROS has been shown to increase in 

skeletal muscle along with increasing age [2, 27]. Excessive production of ROS has been 

shown to be a key signal for the onset of several musculoskeletal diseases [189]. Old animals 

in our study showed much higher level of ROS compared to young animals. ROS also 

stimulate negatively the mitochondrial biogenesis [68]. These include decreased 

mitochondrial biogenesis and turnover, and oxidative damage to mitochondrial enzymes, 

structural proteins and membrane lipids. It has been suggested PGC-la plays a critical role in 

age-related reduction of mitochondria biogenesis [93].  

However, there was no significant change in PGC-1a protein content between old and young 

rats in our study. This finding can be supported by the notion that overall levels of PGC-1a 

protein did not change with age [190]. In other hand, however, the changes in mitochondrial 

energy metabolism may be due to a decline in PGC-1a activity with age [191]. In contrast to 

our result, Kang et al, reported PGC-1a mRNA expression and protein content decreased by 

35% and 19% (P < 0.01 and P < 0.05 respectively) in old rats compared to young rat rats 

[131]. Koltai et al. also found a lower amount of PGC-1a in old rats than young ones [192]. 

Different muscle types that were used in these studies (soleus) [131, 192] compared to our 

study (vastus lateralis) can explain, at least in part, this difference observed for PGC-1a 

protein content in responses to aging. Previously it has been shown that type II fibers are 

vulnerable to age-associated atrophy in humans and in non-human primates, while type I 

fibers generally are not. These data suggest that fibers of distinct structural and metabolic 

profiles are differentially impacted by age [190]. Among the upstream enzymes and 

transcription factors known to control PGC-1a gene expression and activity, such as AMPK, 

p38MAPK, SIRT1 and CREB [131], we found that SIRT1 level did not show a significant 

age-related change, thus, its unchanging expression could be a reason for the lack of 

difference in PGC-1a protein level between old and young age in current study. In support of 

our findings, Kang et al.  [131] reported that there was no difference in expression levels of 

SIRT1 in muscle of old vs. young rats. In our study we did not measure SIRT1 and PGC-1a 

activity, however, pervious study reported that levels of nicotinamide 

phosphoribosyltransferase (NAMPT) were lower in tissue from old animals. NAMPT is a key 

enzyme in the NAD salvage pathway that positively regulates SIRT1 activity in skeletal 

muscle. A decline in NAMPT would be predicted to lower SIRT1 activity, which would 
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negatively influence PGC-1a localization and activity [190]. SIRT1 deacetylates and 

activates PGC- 1a [193], while SIRT3, another one of mammalian Sirtuins, which is localized 

to mitochondria plays a major role in deacetylating and modifying the enzymatic activities of 

several mitochondrial proteins [194]. In agreement with previous studies [193, 195, 196], we 

found a significant reduction of the protein content of SIRT3 in aged rats compared to 

younger ones. SIRT3, a mitochondrial NAD+-dependent deacetylase, has been shown to play 

a crucial role in controlling cellular ROS homeostasis [197]. SIRT3 deacetylates and 

activates many mitochondrial enzymes involved in fatty acid ß-oxidation, amino acid 

metabolism, the ETC, and antioxidant defenses [198]. Interestingly, this decreased levels of 

ROS and SIRT3 in our study was associated with a remarkable reduction in Cyto C and Cox 

4 in old subjects. In consistent with our results, data reported from a study on 146 healthy 

men and women aged 18–89 years demonstrated that mtDNA and consequently abundance of 

mRNA for Cox 4, which is encoded by mtDNA and nuclear DNA, declined with advancing 

age [199]. Kontani et al. [200] Found that Cox 4 protein level was also reduced considerably 

in the aged gastrocnemius muscles with atrophy [200]. Moreover, COX activity, an 

established biochemical indicator of mitochondrial volume, was 30% lower (P < 0.05) in the 

muscle from old, compared to young animals [201]. On the other hand, our further 

measurements showed that Nrf2, a nuclear transcription factor that activates the proximal 

promoter of the rat Cox 4 gene significantly decreased with aging [202]. Taken together, our 

findings support age related mitochondrial dysfunction in the old rat. 

Apoptosis have also been shown as a potential mechanism involved in sarcopenia [43, 91, 

118]. Oxidative stress, chronic inflammation, and impaired insulin sensitivity seems to be 

potential candidates for the activation of myonuclear apoptosis at old age [43]. Proteolytic 

enzymes, known as caspases, perform the dismantling of the cell and are normally present as 

inactive zymogens (procaspases). Upon appropriate stimuli, initiator caspases (i.e., caspase-8, 

caspase-9, caspase-12) are activated, leading to the activation of effector caspases (i.e., 

caspase-3, caspase-6, caspase-7) responsible for the cellular degradation and DNA 

fragmentation via a caspase-activated DNase (CAD) [31]. Two major pathways of caspase 

activation are distinguished based on the extrinsic or intrinsic origin of the death-inducing 

stimulus. The extrinsic pathway is initiated by the stimulation of cell surface death receptors 

(e.g. TNF-R) by their ligands (e.g. TNF-α). The intrinsic pathway is activated through the 

triggering signaling from mitochondria or the endoplasmic reticulum [91]. The release of 

apoptotic triggers appears to be modulated through two mechanisms: (1) the balance of 
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proapoptotic (e.g., Bax) and anti-apoptotic proteins (e.g., Bcl-2), particularly from the Bcl-2 

family, which control OMM stability and form the mitochondrial apoptosis-induced channel 

(MAC), and (2) the mPTP [52]. The balance between these mediators (e.g., Bax-to-Bcl2 

ratio) is considered a fundamental control point for the cell fate by regulating OMM stability 

as Bax promoting mPTP opening, while the antiapoptotic Bcl-2 possess an inhibitory effect 

[31]. The mPTP opening then results in the release of apoptotic factors that are stored in the 

intermembrane compartment [93]. In addition, p53 can also promote apoptosis via inducing 

Bax activity [203-205]. 

Our result demonstrated that a significant increase in p53 protein content was associated with 

a remarkably decreased Bcl-2 and a significant increase of Bax protein expression in old vs. 

young subjects. Consequently, cell antiapoptotic ability (Bax to Bcl-2 ratio) was also lower in 

the aged rats. However, no age-related difference was found in TNF-α protein level. 

Increased p53 content observed in the current study would be probably due to much higher 

levels of ROS in aged rats compared to young ones.  

Recent studies have indicated that cellular concentration and distribution of p53 has different 

cellular function, and ROS can act as an upstream signal that triggers p53 activation [206]. In 

agreement with our findings, a number of studies reported increased expression of Bax and 

reduced levels of Bcl-2 in the skeletal muscle of old rodents [55, 98, 207, 208]. In contrast, 

however, some investigators have found that Bcl-2 family proteins increased in old muscles 

[209, 210].  These elevations of Bcl-2 detected in aged muscles could be interpreted as a 

compensatory response to aging. It was demonstrated that increased expression of Bcl-2 in 

the gastrocnemius muscle of old mice was paralleled by enhanced serine-phosphorylation and 

subsequent inactivation of Bcl-2, which prevented its anti-apoptotic actions in spite of the 

elevated expression [55].  

 

5.2 Endurance training positively reversed some cellular markers involved in 

sarcopenia 
 

Physical inactivity is a significant contributing factor to age-related sarcopenia. It is well 

established that sedentary elderly have less skeletal muscle mass and high prevalence of 

disability [4]. Exercise training is considered as a simple, feasible, and inexpensive strategies 

available to prevent the onset of sarcopenia and reduce the rate of functional decline [46]. 
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Previous studies have clearly shown the effectiveness of resistance-type exercise 

interventions on skeletal muscle mass and functional capacity in the elderly [211-217]. In 

addition, endurance type exercise training has been shown to improve muscle mass and 

strength, and increase performance capacity in both the young and elderly [75, 103, 126, 128, 

218-223].  

The data from our study showed that 6 weeks endurance exercise training did not lead to 

significant changes in the level of IGF-1 and protein content and phosphorylated of Akt, 

pAkt, mTOR, pmTOR, pERK1/2, but significantly increased the amount of follistatin and 

decreased pERK1/2 in the old exercise group compared to old control.  

Number of studies found an increased size and contractile properties of old slow (MHC I) 

and fast (MHC IIa) myofibers, following endurance training [128, 220, 224]. One study 

reported that 12 wk of cycle ergometer training increased MHC I fiber size 16 +/- 5% and 

MHC I peak power 21 +/- 8% while MHC IIa peak power was unaltered [220]. In one other 

study, 78 healthy, previously untrained men and women aged 19-87 years were evaluated 

before and after 4 months of bicycle training or control (flexibility) activity. They found that 

mixed muscle protein synthesis declined with age at the whole body level at the rate of 3.5% 

per decade. Exercise training improved overall aerobic capacity 9%, while mixed muscle 

protein synthesis increased by 22%. This study also demonstrates that aerobic exercise can 

enhance muscle protein synthesis irrespective of age [222]. However, the mechanism(s) by 

which endurance exercise affects aged skeletal muscle remain poorly understood. A number 

of studies have examined the effect of endurance training on IGI-1 and IGF-1 binding 

proteins among older subjects [45, 125, 129, 225]. Poehlman et al. studied 8 weeks cycling 

exercise, three times per week at 75% of their Vo2max, on older individuals. They found that 

endurance training significantly increased fasting levels of IGF-1only in men (r = .79, P < 

.02), while there was no mean group change in IGFBP-1 or IGFBP-3 [129]. A comparison 

between sedentary middle-aged (MAsed) and active middle-aged (MAcy)- almost 12 hours 

of cycling per week for the past 11 ±1.4 (SE) years- showed that basal IGF-1, IGFBP-1, and 

IGFBP-3 were higher (61%, 127%, and 21%, respectively, P <0.05) in MAcy than in MAsed 

[225]. In addition, an increased activity of the GH/IGF-1 system by endurance training in 

middle-aged men has also been reported [125].   

However, there are some documents which reported that endurance training did not lead to 

remarkable changes in muscle mass, maximal strength, and power [112, 127, 221, 223]. 
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Possible explanations for this difference could be due to differences in age (middle-age vs. 

aged) and gender (men vs. women) of the subjects, and especially the various exercise 

training protocols used (i.e., intensity and duration). For example, 2 weeks of endurance 

training at moderate intensity did not increase IGFBP-3 in an aged sedentary population, 

whereas specific, intense training in elite athletes performed over several months increased 

this binding protein [225]. In accordance with our results, Gielen et al. [127] found that 4 

weeks endurance training on treadmill did not change muscle mRNA levels of IGF-1 in 

elderly men. Also, LeBrasseur et al. [112] reported that 4 weeks treadmill exercise training 

did not change Akt protein abundance and phosphorylation of Akt relative to total in aged 

muscle of old mice. Furthermore, Pasini et al. [103] investigated the effects of treadmill 

exercise and training frequency on anabolic pathways in skeletal muscle of old rats. Aged 

male Wistar rats were trained on a treadmill for 3 (EX3) or 5 days/week (EX5) during 8 

weeks and compared with age-matched sedentary controls (SED). Compared with SED rats, 

the expression of p-mTOR was unaffected by EX3. However, EX5 up-regulated p-mTOR 

expression [103]. Taken together, these data suggest that IGF-1/Akt/mTOR pathway is not 

the main target of endurance exercise training and its effects on skeletal muscle protein 

synthesis probably occur through other pathways involved in sarcopenia. In this regard, we 

found that follistatin protein amount significantly increased in old rats after endurance 

training compared with control.  

Follistatin is expressed in different tissues and acts as an antagonist of different family 

members of TGF-ß [82]. Increased protein synthesis can also be due to decrease in the 

protein breakdown as a result of inhibitory extracellular binding proteins, such as follistatin, 

whose effect is even greater than the lack of myostatin [72]. In agreement with our result, 

Hansen et al. [124] found that endurance exercise induces increased levels of follistatin in the 

circulation. The kinetics revealed that plasma follistatin increased markedly during the 

recovery after exercise both in humans and in mice. The increase in plasma follistatin after 

exercise appears to be dependent on both the intensity and duration of exercise. Thus, 3 h of 

bicycling exercise induced a 7-fold increase in plasma follistatin, whereas 2 h of one-legged 

knee extensor exercise only increased plasma follistatin by 2-fold. The exercise-induced 

increase in follistatin may also be dependent on the muscle mass recruited during the exercise 

bout [124]. 

Sarcopenia is the result of imbalance between protein degradation and synthesis, Although 

the exact contribution of each of these factors is unknown, however it is believed that the 
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increase in muscle proteolysis associated with aging can make a significant contribution in 

the development of muscle degradation [90]. Unlike protein synthesis, a larger number of 

studies have examined the effects of Endurance Training on the mechanisms involved in 

protein breakdown in aged-skeletal muscle and conflicting results have been reported [112, 

126, 127, 226, 227].  

The results of our study revealed that endurance training significantly decreased protein 

expression of MuRF-1 and Murf-2 and increased PSMA6 levels in aged rats, while no change 

was found in Myostatin and ubiquitination levels. Similar reduction in MuRF-2 content and 

elevation in PSMA6 level has been seen in young rats following training.  

Our results are in line with previous studies, which demonstrated reduced levels of mRNA 

and protein expression of MuRF-1 [112, 127] and no changes in myostatin [127] following 

endurance exercise in old humans and animals. The effect of myostatin is mediated by the 

transcription factors Smad2 and Smad3, which also interact with IGF1-Akt signaling [63]. 

LeBrasseur et al. also found that Smad3 protein abundance did not change following 4 weeks 

endurance training in old mice [112]. Nevertheless, in contrast, some studies have reported 

reduced levels of myostatin mRNA and protein expression in response to endurance exercise 

[126, 226, 227]. One possible reason for these conflicting results could be due to differences 

in muscle fiber type used in these studies. For example, Ko et al. [227] showed that treadmill 

exercise improved muscle mass and strength through suppression of myostatin mRNA and 

protein expression in the gastrocnemius (versus vastus lateralis muscle in our study). Protein 

synthesis and muscle adaptation are regulated differently with aging in different muscle types 

[172] and signal transduction protein concentrations vary between fast and slow muscles 

[228]. To our knowledge, this is the first investigation to report significant reduction in 

protein content of MuRF-2 in aged skeletal muscle in response to endurance training. It has 

been indicated that combined inhibition of MuRF1/MuRF2 can lead to stimulation of striated 

muscles anabolism and protestation muscles from sarcopenia during aging [155]. 

Aging is characterized by a progressive deterioration in aerobic exercise capacity and this 

attenuation in cardiovascular efficiency may be linked to reduced quantity or quality of 

skeletal muscle mitochondria [122]. Endurance training can correct the age related decline in 

enzyme activities or protein content in older individuals [53]. Muscle mitochondrial 

adaptations to aerobic training appear to be the result of exercise-induced increases in the 

transcription of mitochondrial genes [122]. 
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The findings of our study revealed that 6 weeks endurance training significantly increased 

protein expression of SIRT3, Cyto C, Cox 4 and Nrf2 while there was no effect of exercise 

training on ROS levels and the amount of SIRT1 and PGC-1α. 

Among the upstream enzymes and transcription factors known to control PGC-1α gene 

expression and activity, such as AMPK, p38MAPK, SIRT1 and CREB [131], we found that 

SIRT1 levels did not show a significant change in response to exercise training. Thus, this 

lack of response could be a possible reason for the unchanged PGC-1a protein expression 

with endurance training at old age. SIRT1 is known to activate PGC-1a by deacetylation, and 

SIRT1/PGC-1a work as regulatory axis to control mitochondrial function during aging [229]. 

Previous studies have reported conflicting results regarding the effect of endurance training 

on PGC-1a activity and expression in old human and rodents. In agreement with our result, 

findings of LeBrasseur et al. [112] Showed that 4 weeks endurance training did not change 

PGC-1a protein expression in 24-month-old male mice. In contrast, 12 weeks endurance 

training showed a 2.3 and 1.8-fold higher PGC-1a content in old exercised than old and 

young control rats, respectively (P < 0.01) [131]. Moreover, after 12 weeks of aerobic 

exercise training on a cycle ergometer in older women, PGC-1a protein content was 20 ± 5% 

lower (p < 0.05) [126]. A possible explanation for these conflicting results could be due to, at 

least in part, differences in muscle types that have been examined in these studies (e.g. soleus 

muscle [131] vs. vastus lateralis muscle in [126] and our study). Skeletal muscle fibers are 

classified into three types: type I, type IIa, and type IIb [230] and PGC-1α is expressed 

preferentially in muscle enriched in type I fibers [231]. Coactivation of PGC-1a induces Nrf1 

and 2, which promote the expression of most nuclear-encoding mitochondrial proteins, as 

well as Tfam that directly stimulates mitochondrial DNA replication and transcription [131]. 

Nrf2 downstream signaling are believed to be involved in redox homeostasis preservation and 

protection of the structure and function of skeletal muscle [189]. Nrf2 is regarded as a master 

regulator of antioxidant transcription and binds to the antioxidant response element (ARE) in 

the promoter of target antioxidant genes and tightly regulates its transcription [232]. 

Furthermore, SIRT3 activity can reduce ROS levels by directly modulating key antioxidant 

enzymes, thereby acting as a shield against oxidative damage. SIRT3 exerts its antioxidant 

effects in an interaction with manganese superoxide dismutase (MnSOD) and isocitrate 

dehydrogenase 2. MnSOD is the primary mitochondrial antioxidant enzyme that converts O•-

2 to H2O2, which is further converted to water by catalase. The ability of MnSOD for 

scavenging ROS in mitochondria can be significantly enhance due to directly deacetylation 
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by SIRT3 [198]. In line with previous studies [233-236], our results demonstrated that protein 

contents of both Nrf2 and SIRT3 significantly increased, suggesting an adaptive response in 

the intracellular antioxidant system following endurance training in old rats. Indeed our 

findings showed improved mitochondrial biogenesis due to remarkably increased Cyto C and 

Cox 4 in old exercised rats. Kang et al. reported that a treadmill running program for 12-

weeks resulted in 1.4-fold increase in Cyto C protein content (P < 0.05) in old trained vs. old 

sedentary rats [131]. Indeed, 12 weeks of aerobic exercise training on a cycle ergometer in 

nine older women (70 ± 2 years) demonstrated that Cox 4 was elevated 33 ± 7% after 

training, suggesting that the training program resulted in mitochondrial biogenesis [126]. 

Moreover, an increased muscle protein content of Cox 4, the marker of mitochondrial 

biogenesis, has been reported in response to endurance training among old humans and 

rodents [56, 103, 121]. Taken together, our result indicates that endurance exercise training 

improved mitochondrial biogenesis in old rats. 

In connection with the factors involved in sarcopenia, accumulating evidence suggests that 

enhanced activation of apoptosis takes place in aged skeletal muscle, likely contributing to 

the development of sarcopenia [93]. In general, aging is associated with increased 

mitochondrial dysfunction and pro-apoptotic signaling through the mitochondrial Bcl-2 

pathway. The ratio of pro- to anti-apoptotic Bcl-2 family proteins (e.g., Bax/Bcl-2) can be 

used as an indicator of cell apoptosis which is involved in myonuclei integrity and cell 

survival by controlling mitochondrial membrane permeability and activation of caspases. 

Exercise training is well known to convey benefits across a spectrum of biological processes, 

including adaptations in apoptotic pathways [237]. A number of studies have investigated the 

effect of endurance training on cellular apoptotic markers in old subjects [61, 98]. One study 

found that twelve weeks of treadmill exercise training increased anti-apoptotic Bcl-2, while 

markedly reduced Bax, and Bax/Bcl-2 ratio in the white gastrocnemius and soleus muscles of 

old rats [98]. However, in contrast, our results indicated that six weeks of treadmill exercise 

training did not change the protein contents of TNF-α, p53, Bcl-2, Bax and Bax/Bcl-2 ratio in 

the vastus latralis muscles of old rats. In addition to differences in the duration of the studies 

(12 weeks [98] instead 6 weeks in our study), another important potential factor for these 

inconsistent results may be due to the differences in muscle fiber types used. In this regard, 

Marzetti et al. [61] reported that type I muscle fibers, like soleus, are less susceptible to age-

associated apoptosis than type II fibers and therefore less likely to be affected by short-term 
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exercise training. However apoptotic potential is elevated in type II muscle fibers at old age 

and may be attenuated by interventions, such as life-long CR and ET [61]. 

In summary, our results indicated that 6 weeks endurance training positively regulated some 

cellular sarcopenic markers by reducing proteins involved in muscle proteolysis and 

increasing some proteins involved in mitochondria biogenesis in the vastus latralis muscle of 

old rats.  

Changes in fiber-type-specific myosin isoform and in mitochondrial energy metabolism point 

to PGC-1α regulated pathways in the metabolic transition at mid-age. Although overall levels 

of PGC-1α protein did not change with age, the changes in mitochondrial energy metabolism 

are consistent with a decline in PGC-1α activity with age. Immunohistological detection of 

PGC-1α indicates that its localization to the nucleus is impaired with age, suggesting a 

possible mechanism for diminished PGC-1α activity. The NAD-dependent deacetylase 

SIRT1 is an activator of PGC-1α [238-240] that can also regulate PGC-1α cellular 

distribution [241]. The lower NAD/NADH ratio detected in mid-age is predicted to 

negatively influence SIRT1. Attempts to measure levels of SIRT1 in tissue homogenates 

were not successful; however, levels of NAMPT were lower in tissue from old animals. 

NAMPT is a key enzyme in the NAD salvage pathway that positively regulates SIRT1 

activity in skeletal muscle in mice [242]. A decline in NAMPT would be predicted to lower 

SIRT1 activity, which would negatively influence PGC-1a localization and activity. The 

finding that subsarcolemmal mitochondria were more sensitive to the impact of age is of 

interest because this population of mitochondria is known to be most responsive to changes in 

PGC-1α activity [190, 243]. 

 

5.3 Endurance training combined with IGF-1 administration positively 

affected some cellular markers involved in sarcopenia 
 

Our third study question was about the effect of combination of endurance training and IGF-1 

treatment on some cellular markers involved in sarcopenia. To the best of our knowledge, our 

study is the first, which has studied the effects of combined endurance training and IGF-1 

treatment on skeletal muscle cellular markers of sarcopenia in old rats. Just recently, one 

study examined the effect of IGF-1 expression within skeletal muscles with or without 

exercise on the prevention of sarcopenia [148]. They used four-month-old male transgenic 
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mice that were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 

months of age. They found that in wild-type mice, the mass of the quadriceps muscles was 

reduced at 28 months, but exercise rescued such loss, without affecting the CSA of the 

myofibers. In contrast, they reported that elevated IGF-1 level alone was insufficient, while 

the combination of exercise and IGF-1 was augmentative in maintaining the diameter of 

myofibers in the quadriceps. Their findings showed that exercise and IGF-1 had a mild effect 

on reducing aged-related skeletal muscle loss, but there is no improvement in muscle function 

when assessed by grip strength [148]. However, previous studies investigated the effects of 

combined endurance training and administration of testosterone [66], growth hormone [244, 

245], fresh red orange juice (ROJ) [246], melatonin [247], resveratrol [248] , 17 beta-

estradiol and perindopril [249], and caloric restriction [250] on aged skeletal muscle in 

humans and rodents. 

We found that two weeks of IGF-1 administration significantly increased serum IGF-1 levels 

in OEI compared to OC. Consequently, this lead to a significant increase in protein 

expression of follistatin, mTOR and pmTOR and reduction in pERK1/2 following 

combination of endurance training and IGF-1 supplementation in OEI vs. OC. This activation 

of protein synthesis pathway was along with a remarkable reduction in the protein content of 

MuRF-1.  

In agreement with our results, Guo et al. [66], reported that testosterone injection plus low 

intensity physical exercise training (T/PT) or vehicle plus physical training (V/PT) for 2 

months increased mRNA expression of IGF-1 and FGF21, while reduced mRNA expression 

of MURF1 and MAFbx in skeletal muscle (triceps) in old mice [66]. It is well known that in 

addition to stimulating protein synthesis and hypertrophy, IGF-1 also inhibits protein 

breakdown [62]. The exact mechanism by which increased IGF-1 levels lead to a reduction in 

the level of MuRF1 is currently unclear. However, it was shown that binding of IGF-1 to its 

receptor induces a conformational change in the IGF-1 receptor tyrosine kinase, resulting in a 

multiple auto-phosphorylation cascade. As a consequence, PI3K is activated resulting in Akt 

phosphorylation. Activation of PI3K/Akt, in turn inhibits FOXOs activity. Consequently, 

Inhibition of translocation of FOXOs into the cell nucleus then suppress transcription of the 

atrogin-1 and MuRF1 [97]. Interestingly, we found that protein expression of follistatin and 

total mTOR corresponded with a significant reduction in MuRF1 protein amount in OEI vs. 

OC. In this regard, it is suggested that in addition to the AKT/FOXO-1 pathway, mTOR also 

blocks MuRF-1 and MAF box transcription [62]. This inhibitory effect of mTOR can be 
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mediated by follistatin while these effects were attenuated by the inhibition of mTOR or the 

deletion of S6K1/2. Furthermore, Smad3 is an important intracellular regulator that is able to 

mediate the effects of follistatin on mTOR signaling. In fact, Smad3 can prevent skeletal 

muscle growth through suppression follistatin downstream signaling. Interestingly, follistatin 

can regulate Smad3- and mTOR activity independent of myostatin [170]. Other mechanisms 

that mediate the process of apoptosis is by IKK, which phosphorylates IRS-1 on serine 307 to 

reduce IGF-1 stimulated signaling [62]. NF-кB transcription factors are expressed in skeletal 

muscle and are activated by inflammatory cytokines, particularly TNF-α. The increase in the 

TNF-α level induces activation of an IKKß complex that phosphorylates IкB, resulting in its 

ubiquitination and proteasomal degradation [72]. It has been demonstrated that IKK deletion 

is associated with increased activity of AKT and P70S6K, along with increased protection 

against atrophy. Cytokines activate NF-кB signaling which can directly attenuate IGF-1 

stimulated protein synthesis; this NF-кB activation enhances muscle atrophy and upregulates 

MuRF-1 [62]. In this regard, we observed that two weeks of IGF-1 administration combined 

with 6 weeks endurance training markedly decreased TNF-α and MuRF-1 protein contents 

and elevated IGF-1 levels in OEI compared with OC.  

The most remarkable result to emerge from our data is that protein expression of Bcl-2 was 

significantly higher in OEI than in OC and OE. Furthermore, Bax to Bcl-2 ratio as an 

apoptotic index was significantly lower in OEI vs. OC.  

Alterations of the mitochondrial Bcl-2 family pathway may be a potential mechanism leading 

to apoptosis in aging skeletal muscle [98]. The Bcl-2 gene family regulates the apoptotic 

process through the balance of pro-apoptotic (Bax, Bcl-XS) and anti-apoptotic products (Bcl-

2, Bcl-XL) [251]. The ratio of pro- to anti-apoptotic proteins (e.g., Bax/Bcl-2) regulates 

myonuclei and cell survival by controlling mitochondrial membrane stability. Decreased 

mitochondrial membrane stability and increased pore formation initiate the release of Cyto C, 

formation of the apoptosome, catalyzed by Apaf-1 (apoptotic protease activating factor-1), 

and followed by the cleavage and activation of caspase-9 and caspase-3 [98]. The mechanism 

by which IGF-1 protects cells from apoptosis is not yet completely understood. However, it 

has been argued that IGF-1 increased the phosphorylation of the pro-apoptotic factor Bad and 

the levels of the anti-apoptotic protein Bcl-2 [252]. In fact, interaction of the IGF-1R with 

IRS-1 activates PI3-ki, which in turn activates Akt/ PKB. The concluding step is the 

phosphorylation, by Akt/PKB, of BAD, one of the members of the Bcl-2 family of proteins 

[253]. 
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Our result also demonstrated that protein contents of SIRT3 and Nrf2, but not SIRT1, PGC-

1a, Cyto C and Cox 4, were significantly increased in OEI compared with OC.  

Indeed critical roles of SIRT3 and Nrf2 in mitochondrial biogenesis have been described 

[254] and both of them play an important role in antioxidant response element signaling 

pathway [255, 256]. As mentioned before, elevated levels of SIRT3 and Nrf2 proteins could 

be the result, at least in part, of adaptive responses to endurance training. However, IGF 

pathways can also contribute to mitochondria biogenesis and function. In this respect, Guo et 

al. [66] reported that increased mRNA expression of IGF1 and FGF21 following 2 months of 

testosterone injection combined with low intensity physical exercise training led to increased 

mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis 

[66]. In support of this notion, it has been shown just recently that suppression of IGF-1 and 

mTOR contributes to impairments in mitochondrial biogenesis and function in aging G3 

mTerc-/- mice (telomerase RNA component knockout) [257].  

In summary, our findings demonstrated that 6 weeks endurance training combined with 2 

weeks IGF-1 administration positively affected some cellular markers involved in sarcopenia 

via increased IGF-1 levels and activation of its downstream pathways. 
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6. Conclusions 
 

In conclusion, our findings demonstrate that aging is associated with activation of signaling 

pathways involved in sarcopenia. Based on our study, it seems that among cellular factors 

that are responsible for protein synthesis and degradation, increased activity of proteolysis 

signaling, such as FOXO and apoptosis are contributed more to the onset and progression of 

sarcopenia than decreased anabolic pathways.  

In regard to our finding, short term ET may attenuate sarcopenic conditions in old rats. This 

protective effect of ET seems to be due to, at least in part, improvement of mitochondria 

biogenesis and function as well as reduced levels of factors involved in protein degradation, 

such as MuRF1, in aged skeletal muscle.  

According to the results of this study, combination of ET and IGF-1 administration can 

enhance the effects of ET alone on sarcopenic rats. This reinforcing effect of IGF-1 is likely 

to be through the modulation of activator and inhibitor factors of apoptosis such as TNF-α 

and   Bcl-2, respectively. 

However, in order to achieve the best combination therapy it is essential for future researches 

to examine the impact of the intensity and duration of ET, as well as that of different doses of 

the hormone at various level of sarcopenia in both old female and male subjects. 
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7. Summary of thesis 
 

7.1 Summary in English 

 

Introduction: The aging process is associated with reduced physiological and functional of 

several body systems. Loss of muscle mass with aging, also known as sarcopenia, is 

associated with elevated risk of cardiac, pulmonary, and metabolic disease processes, which 

further contributes to the socioeconomic burden. It has been well documented that IGF-1 and 

mitochondria signaling pathways play important roles in protein synthesis and degradation in 

skeletal muscle of mammalian. In this regard, we hypothesized that endurance training and   

IGF-1 treatment can positively affect cellular markers involved in sarcopeni. Methodology: 

Fifteen young (3 months old) and 15 old (26 months old) male Wistar rats were were 

assigned to one of the following groups: young control (YC), young exercised (YE), young 

exercised and IGF-1-treated (YEI), old control (OC), old exercised (OE), and old exercised 

and IGF-1-treated (OEI). Exercised rats were introduced to treadmill running for 3 days; then 

for the next 2 weeks the running speed was set at 10 m/min, with a 5% incline for 30 

min/day, 5 days per weeks. The running speed and duration of the exercise were gradually 

increased to 60% of VO2 max of the animals. In order to protein measurement, frozen vastus 

lateralis samples were weighed and homogenized and western blot were used. Data were 

analyzed by SPSS program version 21 and significance level was set at p < 0.05. Result: Our 

result demonstrated that aging was associated with a reduced level of anabolic factors 

including IGF-1 plasma levels and expression level of follistatin and an increased in catabolic 

agents including Myostatin in old rat. The data from our study showed that 6 weeks 

endurance exercise training significantly increased the amount of follistatin and mitochondria 

function such as Cyto C, Cox 4 and Nrf2 and also decreased levels of catabolic factors 

including MuRF 1 and 2. Our findings demonstrated that 6 weeks endurance training 

combined with 2 weeks IGF-1 administration positively affected some cellular markers 

involved in sarcopenia via increased IGF-1 levels and activation of its downstream pathways.  

Discussion and conclusion: According to the results of this study, combination of ET and 

IGF-1 administration can enhance the effects of ET alone on sarcopenic rats. This reinforcing 

effect of IGF-1 is likely to be through the modulation of activator and inhibitor factors of 

apoptosis such as TNF-α and   Bcl-2, respectively. 
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7.2 Summary in Hungarian (Összefoglalás) 

 

Bevezetés: az öregedés folyamata során számos fiziológiai és funkcionális változás 

következik be az élő szervezetekben. Az idősödő szervezet vázizom vesztése, más néven 

szarkopénia, pulmonáris- kardiológia és nem utolsó sorban metabolikus elváltozásokkal 

hozható összefüggésbe. Ezek betegségek igen jelentős szocioökonómiai terhet jelentenek 

társadalmunk számára. Egy ideje jól dokumentált tény, hogy emlős szervezetek 

vázizomzatában az IGF-1 és a mitokondriális jelátviteli útvonalak egyaránt fontos szerepet 

játszanak a fehérjék szintézisben és lebontásban. Ennek fényében feltételeztük, hogy az 

állóképességi edzés és az IGF-1 kezelés pozitív hatást fog kifejteni a szarkopéniával 

összefüggésbe hozható sejtmarkerek szintjére.  

Anyag és módszer: vizsgálatunk során fiatal (3 hónapos, n=15) és idős (26 hónapos, n=15) 

wistar patkányokkal dolgozunk. Mind az idős, mind a fiatal populációból 3 csoportot 

képeztünk: Fiatal kontrol (YC), fiatal edző (YE), fiatal edző és IGF-1 kezelt (YEI), továbbá 

idős kontrol (OC), idős edző (OE), idős edző IGF-1 kezelt (OEI). Az állatok edzését 

futópadon végeztük: a háromnapos szoktatási időszak után az álatok 2 hétig 10m/min 

sebességgel 5% emelkedő mellet edzettek 30pecgig heti öt napon. Ezt követően a terhelés 

fokozatosan a maximális relatív oxigén felvételük 60%-hoz lett igazítva. Az IGF-1 kezelést a 

vizsgálat utolsó két hetében alkalmaztuk. A kombinált csoport egyedei naponta ~5μg/kg 

mennyiségű IGF-1 et kaptak 0.5 μL/hr emissziós rátával, a kontrol csoportnak placebóként 

fiziológiás sóoldatot adagoltunk. A fehérje összetétel maghatározást Western Blott analízissel 

végeztük. A vizsgálati állatok vastus laterális izmait folyékony nitrogénnel fagyasztottuk, 

majd tömegmérés után homogenizáltuk. A csoportok közti különbség meghatározásánál 

SPSS (vol.21) programot használtunk, a szignifikancia szintet p < 0,05 értékben határoztuk 

meg.  

Eredmények: méréseink során demonstráltuk, hogy az öregedés során csökkenek az 

anabolikus folyamatok indikátorai, ezek közül kiemelten a plazma IGF-1 mennyiség és a 

follisztatin expresszió. A katabolikus markerek tekintetében a myosztatin mennyiség 

növekedett az idős patkányokban. Eredményeink szerint 6 hetes állóképességi edzés 

szignifikánsan képes növelni a follisztatin mennyiséget és fokozza a mitokondriális 

funkciókat, melyeket Cyto C, Cox4 és Nrf-2 fehérjék emelkedése szemléltet. Mind e mellet 

MuRF-1 és MuRF-2 katabolikus faktor csökkenés is tapasztalható a kezelés hatására. A 
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kombinált kezelés számos esetben pozitívan befolyásolta a szarkopénia markerek szintjét, 

feltehetően az IGF-1 jelátviteli útvonal aktiválódásán keresztül.  

Diszkusszió, összefoglalás: Eredményeink alapján, az állóképességi edzés és az IGF-1 

szuplementáció együttalkalmazása tovább tudja fokozni az testmozgás jótékony hatását 

szarkopéniás patkányok esetében. A tapasztalt szinergikus hatás úgy tűnik az apoptózist gátló 

és aktiváló folyamtok modulációjában rejlik, kiemelve a TNF-alfa és a Bcl-2 fehérjék által 

vezérelt útvonalakat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 

8. Bibliography 
 

1. Retrieved from http://esa.un.org/wpp/. United Nations. World Population Prospects: 

The 2010 Revision. 

2. Doria E, Buonocore D, Focarelli A, Marzatico F. (2012) Relationship between human 

aging muscle and oxidative system pathway. Oxid Med Cell Longev. 2012: 830257. 

3. Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. (2012) Aging, 

atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci. 67(6): 626-39. 

4. Doherty TJ. (2003) Invited review: Aging and sarcopenia. J Appl Physiol (1985). 

95(4): 1717-27. 

5. Degens H. (2007) Age-related skeletal muscle dysfunction: causes and mechanisms. J 

Musculoskelet Neuronal Interact. 7(3): 246-52. 

6. Ma JF, Hall DT, Gallouzi IE. (2012) The impact of mRNA turnover and translation 

on age-related muscle loss. Ageing Res Rev. 11(4): 432-41. 

7. Haran PH, Rivas DA, Fielding RA. (2012) Role and potential mechanisms of anabolic 

resistance in sarcopenia. J Cachexia Sarcopenia Muscle. 3(3): 157-62. 

8. Hashemi R, Heshmat R, Motlagh AD, Payab M, Esmaillzadeh A, Baigy F, Pasalar P, 

Siassi F. (2012) Sarcopenia and its determinants among Iranian elderly (SARIR): 

study protocol. J Diabetes Metab Disord. 11(1): 23. 

9. Rom O, Kaisari S, Aizenbud D, Reznick AZ. (2012) Lifestyle and sarcopenia-

etiology, prevention, and treatment. Rambam Maimonides Med J. 3(4): e0024. 

10. Manini TM, Hong SL, Clark BC. (2013) Aging and muscle: a neuron's perspective. 

Curr Opin Clin Nutr Metab Care. 16(1): 21-6. 

11. Milanovic Z, Pantelic S, Trajkovic N, Sporis G, Kostic R, James N. (2013) Age-

related decrease in physical activity and functional fitness among elderly men and 

women. Clin Interv Aging. 8: 549-56. 

12. Garatachea N, Lucia A. (2013) Genes and the ageing muscle: a review on genetic 

association studies. Age (Dordr). 35(1): 207-33. 

13. Altun M, Grnholdt-Klein M, Wang L, Ulfhake B. (2012) Cellular Degradation 

Machineries in Age-Related Loss of Muscle Mass (Sarcopenia). 

14. Koopman R, van Loon LJ. (2009) Aging, exercise, and muscle protein metabolism. J 

Appl Physiol (1985). 106(6): 2040-8. 

http://esa.un.org/wpp/


99 
 

15. von Haehling S, Morley JE, Anker SD. (2012) From muscle wasting to sarcopenia 

and myopenia: update 2012. J Cachexia Sarcopenia Muscle. 3(4): 213-7. 

16. Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK, Group IR. (2013) Comparisons of 

sarcopenia defined by IWGS and EWGSOP criteria among older people: results from 

the I-Lan longitudinal aging study. J Am Med Dir Assoc. 14(7): 528 e1-7. 

17. Scharf G, Heineke J. (2012) Finding good biomarkers for sarcopenia. J Cachexia 

Sarcopenia Muscle. 3(3): 145-8. 

18. Naomi E, Kathryn H. (2012) Prevention of Skeletal Muscle Wasting: Disuse Atrophy 

and Sarcopenia. From Myogenesis to Clinical Relations, Dr. Julianna Cseri (Ed.), 

ISBN: 978-953-51-0712-5, InTech. 

19. Leger B, Derave W, De Bock K, Hespel P, Russell AP. (2008) Human sarcopenia 

reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt 

phosphorylation. Rejuvenation Res. 11(1): 163-175B. 

20. Bijlsma AY, Meskers CG, Westendorp RG, Maier AB. (2012) Chronology of age-

related disease definitions: osteoporosis and sarcopenia. Ageing Res Rev. 11(2): 320-

4. 

21. Noran N. Hairi, Awang Bulgiba, Tee Guat Hiong, Izzuna Mudla. (2012) Sarcopenia 

in Older People. Geriatrics, Prof. Craig Atwood (Ed.), ISBN: 978-953-51-0080-5, 

InTech, DOI: 10.5772/35366. . 

22. Burton LA, Sumukadas D. (2010) Optimal management of sarcopenia. Clin Interv 

Aging. 5: 217-28. 

23. Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, Anker 

SD, Rutkove S, Vrijbloed JW, Isaac M, Rolland Y, M'Rini C, Aubertin-Leheudre M, 

Cedarbaum JM, Zamboni M, Sieber CC, Laurent D, Evans WJ, Roubenoff R, Morley 

JE, Vellas B, International Working Group on S. (2012) Biomarkers of sarcopenia in 

clinical trials-recommendations from the International Working Group on Sarcopenia. 

J Cachexia Sarcopenia Muscle. 3(3): 181-90. 

24. Lee CE, McArdle A, Griffiths RD. (2007) The role of hormones, cytokines and heat 

shock proteins during age-related muscle loss. Clin Nutr. 26(5): 524-34. 

25. Churchward-Venne TA, Breen L, Phillips SM. (2014) Alterations in human muscle 

protein metabolism with aging: Protein and exercise as countermeasures to offset 

sarcopenia. Biofactors. 40(2): 199-205. 



100 
 

26. J. de D. Beas-Jiménez, G. López-Lluch, I. Sánchez-Martínez, A. Muro-Jiménez, E. 

Rodríguez-Bies, Navas P. (2011) Sarcopenia, implications of physical exercise in its 

pathophysiology. prevention and treatment. Rev Andal Med Deporte. 4(4): 158-166. 

27. Marzetti E, Lees HA, Wohlgemuth SE, Leeuwenburgh C. (2009) Sarcopenia of aging: 

underlying cellular mechanisms and protection by calorie restriction. Biofactors. 

35(1): 28-35. 

28. Walston JD. (2012) Sarcopenia in older adults. Curr Opin Rheumatol. 24(6): 623-7. 

29. Sakuma K, Yamaguchi A. (2012) Novel intriguing strategies attenuating to 

sarcopenia. J Aging Res. 2012: 251217. 

30. Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C. (2006) Mitochondrial 

DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev. 

5(2): 179-95. 

31. Marzetti E, Privitera G, Simili V, Wohlgemuth SE, Aulisa L, Pahor M, 

Leeuwenburgh C. (2010) Multiple pathways to the same end: mechanisms of 

myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal. 10: 340-9. 

32. Alway SE, Myers MJ, Mohamed JS. (2014) Regulation of satellite cell function in 

sarcopenia. Front Aging Neurosci. 6: 246. 

33. Narici MV, Maffulli N. (2010) Sarcopenia: characteristics, mechanisms and 

functional significance. Br Med Bull. 95: 139-59. 

34. Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C. (2008) Modulation of 

GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults. Mech 

Ageing Dev. 129(10): 593-601. 

35. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. (2001) Sarcopenia. J 

Lab Clin Med. 137(4): 231-43. 

36. Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, 

Barrett-Connor E. (2003) Sarcopenia in elderly men and women. American Journal of 

Preventive Medicine. 25(3): 226-231. 

37. Evans WJ. (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J 

Clin Nutr. 91(4): 1123S-1127S. 

38. Haveman-Nies A, de Groot LC, van Staveren WA. (2003) Dietary quality, lifestyle 

factors and healthy ageing in Europe: the SENECA study. Age Ageing. 32(4): 427-

34. 

39. Meng SJ, Yu LJ. (2010) Oxidative stress, molecular inflammation and sarcopenia. Int 

J Mol Sci. 11(4): 1509-26. 



101 
 

40. Sakuma K, Yamaguchi A. (2012) Sarcopenia and age-related endocrine function. Int J 

Endocrinol. 2012: 127362. 

41. Hall DT, Ma JF, Marco SD, Gallouzi IE. (2011) Inducible nitric oxide synthase 

(iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY). 

3(8): 702-15. 

42. Kwan P. (2013) Sarcopenia, a Neurogenic Syndrome? Journal of Aging Research. 

2013: 1-10. 

43. Barberi L, Scicchitano BM, De Rossi M, Bigot A, Duguez S, Wielgosik A, Stewart C, 

McPhee J, Conte M, Narici M, Franceschi C, Mouly V, Butler-Browne G, Musaro A. 

(2013) Age-dependent alteration in muscle regeneration: the critical role of tissue 

niche. Biogerontology. 14(3): 273-92. 

44. Ryall JG, Schertzer JD, Lynch GS. (2008) Cellular and molecular mechanisms 

underlying age-related skeletal muscle wasting and weakness. Biogerontology. 9(4): 

213-28. 

45. Arthur ST, Cooley ID. (2012) The effect of physiological stimuli on sarcopenia; 

impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol 

Sci. 8(5): 731-60. 

46. Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, 

Leeuwenburgh C, Pahor M, Manini TM. (2010) Models of accelerated sarcopenia: 

critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 

9(4): 369-83. 

47. Grounds MD. (2002) Reasons for the degeneration of ageing skeletal muscle: a 

central role for IGF-1 signalling. Biogerontology. 3(1-2): 19-24. 

48. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. (2014) 

Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 

2014: 238463. 

49. Konopka AR, Harber MP. (2014) Skeletal muscle hypertrophy after aerobic exercise 

training. Exerc Sport Sci Rev. 42(2): 53-61. 

50. Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, Hans D, 

Gremion G, Kreis R, Boesch C, Canto C, Amati F. (2014) Skeletal muscle 

mitochondria in the elderly: effects of physical fitness and exercise training. J Clin 

Endocrinol Metab. 99(5): 1852-61. 

51. Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A. (2007) Resistance 

exercise reverses aging in human skeletal muscle. PLoS One. 2(5): e465. 



102 
 

52. Peterson CM, Johannsen DL, Ravussin E. (2012) Skeletal muscle mitochondria and 

aging: a review. J Aging Res: 194821. 

53. Johnson ML, Robinson MM, Nair KS. (2013) Skeletal muscle aging and the 

mitochondrion. Trends Endocrinol Metab. 24(5): 247-56. 

54. Flach RJR, Bennett AM. (2010) MAP kinase phosphatase-1-a new player at the nexus 

between sarcopenia and metabolic disease. Aging-Us. 2(3): 170-176. 

55. Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, 

Bernabei R, Marzetti E. (2013) Mitochondrial pathways in sarcopenia of aging and 

disuse muscle atrophy. Biol Chem. 394(3): 393-414. 

56. Konopka AR, Suer MK, Wolff CA, Harber MP. (2014) Markers of human skeletal 

muscle mitochondrial biogenesis and quality control: effects of age and aerobic 

exercise training. J Gerontol A Biol Sci Med Sci. 69(4): 371-8. 

57. Kim TN, Choi KM. (2013) Sarcopenia: definition, epidemiology, and 

pathophysiology. J Bone Metab. 20(1): 1-10. 

58. Maggio M, Lauretani F, Ceda GP. (2013) Sex hormones and sarcopenia in older 

persons. Curr Opin Clin Nutr Metab Care. 16(1): 3-13. 

59. Brioche T, Kireev RA, Cuesta S, Gratas-Delamarche A, Tresguerres JA, Gomez-

Cabrera MC, Vina J. (2014) Growth hormone replacement therapy prevents 

sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant 

defenses. J Gerontol A Biol Sci Med Sci. 69(10): 1186-98. 

60. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. (2010) 

The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms 

underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 

205(3): 201-10. 

61. Marzetti E, Groban L, Wohlgemuth SE, Lees HA, Lin M, Jobe H, Giovannini S, 

Leeuwenburgh C, Carter CS. (2008) Effects of short-term GH supplementation and 

treadmill exercise training on physical performance and skeletal muscle apoptosis in 

old rats. Am J Physiol Regul Integr Comp Physiol. 294(2): R558-67. 

62. Clemmons DR. (2009) Role of IGF-I in skeletal muscle mass maintenance. Trends 

Endocrinol Metab. 20(7): 349-56. 

63. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, 

Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, 

Toniolo L, Larsson L, Maier AB, Munoz-Canoves P, Musaro A, Pende M, Reggiani 

C, Rizzuto R, Schiaffino S. (2013) Signalling pathways regulating muscle mass in 



103 
 

ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. 

Biogerontology. 14(3): 303-23. 

64. Sipila S, Narici M, Kjaer M, Pollanen E, Atkinson RA, Hansen M, Kovanen V. 

(2013) Sex hormones and skeletal muscle weakness. Biogerontology. 14(3): 231-45. 

65. Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-

Leheudre M. (2011) Menopause and sarcopenia: A potential role for sex hormones. 

Maturitas. 68(4): 331-6. 

66. Guo W, Wong S, Li M, Liang W, Liesa M, Serra C, Jasuja R, Bartke A, Kirkland JL, 

Shirihai O, Bhasin S. (2012) Testosterone plus low-intensity physical training in late 

life improves functional performance, skeletal muscle mitochondrial biogenesis, and 

mitochondrial quality control in male mice. PLoS One. 7(12): e51180. 

67. Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, Vecchiet 

L, Fanò G. (2004) The contribution of reactive oxygen species to sarcopenia and 

muscle ageing. Experimental Gerontology. 39(1): 17-24. 

68. Jackson MJ. (2013) Interactions between reactive oxygen species generated by 

contractile activity and aging in skeletal muscle? Antioxid Redox Signal. 19(8): 804-

12. 

69. Sayer AA, Robinson SM, Patel HP, Shavlakadze T, Cooper C, Grounds MD. (2013) 

New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age 

Ageing. 42(2): 145-50. 

70. Volpi E, Nazemi R, Fujita S. (2004) Muscle tissue changes with aging. Curr Opin 

Clin Nutr Metab Care. 7(4): 405-10. 

71. Burks TN, RD. C. (2011) One size may not fit all: anti-aging therapies and 

sarcopenia. Aging (Milano). 3(12): 1142–1153. 

72. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. (2013) Mechanisms 

regulating skeletal muscle growth and atrophy. FEBS J. 280(17): 4294-314. 

73. Kaji H. (2013) Linkage between muscle and bone: common catabolic signals resulting 

in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care. 16(3): 272-7. 

74. Velloso CP. (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J 

Pharmacol. 154(3): 557-68. 

75. Snijders T, Verdijk LB, van Loon LJ. (2009) The impact of sarcopenia and exercise 

training on skeletal muscle satellite cells. Ageing Res Rev. 8(4): 328-38. 



104 
 

76. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S. (2006) Myogenic gene expression 

at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) 

women. J Appl Physiol (1985). 101(1): 53-9. 

77. Sakuma K, Aoi W, Yamaguchi A. (2014) The intriguing regulators of muscle mass in 

sarcopenia and muscular dystrophy. Front Aging Neurosci. 6: 230. 

78. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman 

KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB. (2011) Aging impairs 

contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. 

Skelet Muscle. 1(1): 11. 

79. Romanick M, Thompson LV, Brown-Borg HM. (2013) Murine models of atrophy, 

cachexia, and sarcopenia in skeletal muscle. Biochim Biophys Acta. 1832(9): 1410-

20. 

80. Gumucio JP, Mendias CL. (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 

43(1): 12-21. 

81. Sakamoto K, Arnolds DE, Ekberg I, Thorell A, Goodyear LJ. (2004) Exercise 

regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. 

Biochem Biophys Res Commun. 319(2): 419-25. 

82. Tiago Fernandes, Úrsula P.R. Soci, Stéphano F.S. Melo, Cléber R. Alves, Edilamar 

M. Oliveira. (2012) Signaling Pathways that Mediate Skeletal Muscle Hypertrophy: 

Effects of Exercise Training. From Myogenesis to Clinical Relations, Dr. Julianna 

Cseri (Ed.), ISBN: 978-953-51-0712-5, InTech. 

83. Cargnello M, Roux PP. (2011) Activation and function of the MAPKs and their 

substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 75(1): 50-

83. 

84. Kramer HF, Goodyear LJ. (2007) Exercise, MAPK, and NF-kappaB signaling in 

skeletal muscle. J Appl Physiol (1985). 103(1): 388-95. 

85. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, 

Kandarian SC. (2005) Identification of a molecular signature of sarcopenia. Physiol 

Genomics. 21(2): 253-63. 

86. Edstrom E, Altun M, Hagglund M, Ulfhake B. (2006) Atrogin-1/MAFbx and MuRF1 

are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med 

Sci. 61(7): 663-74. 

87. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M. (2006) Prolonged 

absence of myostatin reduces sarcopenia. J Cell Physiol. 209(3): 866-73. 



105 
 

88. LaGuire TC. (2013) The effects of aging on muscle loss and tissue-specific levels of 

NF-&lt;i&gt;κ&lt;/i&gt;B and SIRT6 proteins in rats. Advances in Aging Research. 

02(01): 1-9. 

89. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. (2011) NF-κB in Aging and 

Disease. Aging and Disease. 2(6): 449–465. 

90. Teixeira VdON, Filippin LI, Xavier RM. (2012) Mecanismos de perda muscular da 

sarcopenia. Revista Brasileira de Reumatologia. 52(2): 252-259. 

91. Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C. (2012) Apoptosis in skeletal 

myocytes: a potential target for interventions against sarcopenia and physical frailty - 

a mini-review. Gerontology. 58(2): 99-106. 

92. Dirks A, Leeuwenburgh C. (2002) Apoptosis in skeletal muscle with aging. Am J 

Physiol Regul Integr Comp Physiol. 282(2): R519-27. 

93. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter 

CS, Bernabei R, Leeuwenburgh C. (2010) Mitochondrial death effectors: relevance to 

sarcopenia and disuse muscle atrophy. Biochim Biophys Acta. 1800(3): 235-44. 

94. Sinha-Hikim I, Sinha-Hikim AP, Parveen M, Shen R, Goswami R, Tran P, Crum A, 

Norris KC. (2013) Long-term supplementation with a cystine-based antioxidant 

delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci. 68(7): 749-59. 

95. Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. (2014) Exercise as a remedy 

for sarcopenia. Curr Opin Clin Nutr Metab Care. 17(1): 25-31. 

96. Leiter JR, Peeler J, Anderson JE. (2011) Exercise-induced muscle growth is muscle-

specific and age-dependent. Muscle Nerve. 43(6): 828-38. 

97. Keller J, Couturier A, Haferkamp M, Most E, Eder K. (2013) Supplementation of 

carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down 

regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond). 10(1): 

28. 

98. Song W, Kwak HB, Lawler JM. (2006) Exercise training attenuates age-induced 

changes in apoptotic signaling in rat skeletal muscle. Antioxid Redox Signal. 8(3-4): 

517-28. 

99. Luo L, Lu AM, Wang Y, Hong A, Chen Y, Hu J, Li X, Qin ZH. (2013) Chronic 

resistance training activates autophagy and reduces apoptosis of muscle cells by 

modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged 

rats. Exp Gerontol. 48(4): 427-36. 



106 
 

100. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S. (2007) Proteolytic gene expression 

differs at rest and after resistance exercise between young and old women. Journals of 

Gerontology Series a-Biological Sciences and Medical Sciences. 62(12): 1407-1412. 

101. Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno 

CR, Jr., Ferreira JC, Brum PC. (2012) Aerobic exercise training upregulates skeletal 

muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 

(1985). 112(11): 1839-46. 

102. Wroblewski AP, Amati F, Smiley MA, Goodpaster B, Wright V. (2011) Chronic 

exercise preserves lean muscle mass in masters athletes. Phys Sportsmed. 39(3): 172-

8. 

103. Pasini E, Le Douairon Lahaye S, Flati V, Assanelli D, Corsetti G, Speca S, Bernabei 

R, Calvani R, Marzetti E. (2012) Effects of treadmill exercise and training frequency 

on anabolic signaling pathways in the skeletal muscle of aged rats. Exp Gerontol. 

47(1): 23-8. 

104. Kenny AM, Dawson L, Kleppinger A, Iannuzzi-Sucich M, Judge JO. (2003) 

Prevalence of Sarcopenia and Predictors of Skeletal Muscle Mass in Nonobese 

Women Who Are Long-Term Users of Estrogen-Replacement Therapy. The Journals 

of Gerontology Series A: Biological Sciences and Medical Sciences. 58(5): M436-

M440. 

105. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, 

Ferrando AA, Wolfe RR. (2004) Amino acid ingestion improves muscle protein 

synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 286(3): E321-8. 

106. Volpi E, Mittendorfer B, Wolf SE, Wolfe RR. (1999) Oral amino acids stimulate 

muscle protein anabolism in the elderly despite higher first-pass splanchnic 

extraction. Am J Physiol. 277(3 Pt 1): E513-20. 

107. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. (2003) 

Essential amino acids are primarily responsible for the amino acid stimulation of 

muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 78(2): 250-8. 

108. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. (2006) A 

high proportion of leucine is required for optimal stimulation of the rate of muscle 

protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol 

Metab. 291(2): E381-7. 



107 
 

109. Kim JS, Wilson JM, Lee SR. (2010) Dietary implications on mechanisms of 

sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem. 21(1): 1-

13. 

110. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler 

R, Wong JB, Egli A, Kiel DP, Henschkowski J. (2009) Fall prevention with 

supplemental and active forms of vitamin D: a meta-analysis of randomised 

controlled trials. BMJ. 339: b3692. 

111. Barillaro C, Liperoti R, Martone AM, Onder G, Landi F. (2013) The new metabolic 

treatments for sarcopenia. Aging Clin Exp Res. 25(2): 119-27. 

112. LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA. 

(2009) Myostatin inhibition enhances the effects of exercise on performance and 

metabolic outcomes in aged mice. J Gerontol A Biol Sci Med Sci. 64(9): 940-8. 

113. Murphy KT, Koopman R, Naim T, Leger B, Trieu J, Ibebunjo C, Lynch GS. (2010) 

Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for 

myostatin signaling in skeletal muscle structure and function. FASEB J. 24(11): 4433-

42. 

114. Sanchis-Gomar F, Gomez-Cabrera MC, Vina J. (2011) The loss of muscle mass and 

sarcopenia: non hormonal intervention. Exp Gerontol. 46(12): 967-9. 

115. Bua E, McKiernan SH, Aiken JM. (2004) Calorie restriction limits the generation but 

not the progression of mitochondrial abnormalities in aging skeletal muscle. FASEB 

J. 18(3): 582-4. 

116. Dirks AJ, Leeuwenburgh C. (2004) Aging and lifelong calorie restriction result in 

adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-

linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med. 36(1): 

27-39. 

117. McKiernan SH, Bua E, McGorray J, Aiken J. (2004) Early-onset calorie restriction 

conserves fiber number in aging rat skeletal muscle. FASEB J. 18(3): 580-1. 

118. Phillips T, Leeuwenburgh C. (2005) Muscle fiber specific apoptosis and TNF-alpha 

signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 19(6): 

668-70. 

119. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, 

Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand 

LA, Spiegelman BM. (2012) A PGC-1alpha isoform induced by resistance training 

regulates skeletal muscle hypertrophy. Cell. 151(6): 1319-31. 



108 
 

120. Phillips BE, Williams JP, Gustafsson T, Bouchard C, Rankinen T, Knudsen S, Smith 

K, Timmons JA, Atherton PJ. (2013) Molecular networks of human muscle 

adaptation to exercise and age. PLoS Genet. 9(3): e1003389. 

121. Bo H, Jiang N, Ji LL, Zhang Y. (2013) Mitochondrial redox metabolism in aging: 

Effect of exercise interventions. Journal of Sport and Health Science. 2(2): 67-74. 

122. Forbes SC, Little JP, Candow DG. (2012) Exercise and nutritional interventions for 

improving aging muscle health. Endocrine. 42(1): 29-38. 

123. Bori Z, Zhao Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos, II, Terzis G, 

Chatzinikolaou A, Sovatzidis A, Draganidis D, Boldogh I, Radak Z. (2012) The 

effects of aging, physical training, and a single bout of exercise on mitochondrial 

protein expression in human skeletal muscle. Exp Gerontol. 47(6): 417-24. 

124. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen 

BK, Plomgaard P. (2011) Exercise induces a marked increase in plasma follistatin: 

evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 152(1): 

164-71. 

125. Manetta J, Brun JF, Maimoun L, Callis A, Prefaut C, Mercier J. (2002) Effect of 

training on the GH/IGF-I axis during exercise in middle-aged men: relationship to 

glucose homeostasis. Am J Physiol Endocrinol Metab. 283(5): E929-36. 

126. Konopka AR, Douglass MD, Kaminsky LA, Jemiolo B, Trappe TA, Trappe S, Harber 

MP. (2010) Molecular adaptations to aerobic exercise training in skeletal muscle of 

older women. J Gerontol A Biol Sci Med Sci. 65(11): 1201-7. 

127. Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, Erbs S, Mangner N, 

Lenk K, Hambrecht R, Schuler G, Adams V. (2012) Exercise training attenuates 

MuRF-1 expression in the skeletal muscle of patients with chronic heart failure 

independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart 

Failure and Aging catabolism study. Circulation. 125(22): 2716-27. 

128. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, 

Trappe TA, Trappe S. (2012) Aerobic exercise training induces skeletal muscle 

hypertrophy and age-dependent adaptations in myofiber function in young and older 

men. J Appl Physiol (1985). 113(9): 1495-504. 

129. Poehlman ET, Rosen CJ, Copeland KC. (1994) The influence of endurance training 

on insulin-like growth factor-1 in older individuals. Metabolism. 43(11): 1401-1405. 



109 
 

130. Kwak HB, Song W, Lawler JM. (2006) Exercise training attenuates age-induced 

elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 

20(6): 791-3. 

131. Kang C, Chung E, Diffee G, Ji LL. (2013) Exercise training attenuates aging-

associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1alpha. Exp 

Gerontol. 48(11): 1343-50. 

132. Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y, Adams V, Schuler G. (2009) 

Impact of exercise training on myostatin expression in the myocardium and skeletal 

muscle in a chronic heart failure model. Eur J Heart Fail. 11(4): 342-8. 

133. Ziaaldini MM, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW, Radak Z. (2015) 

Exercise training increases anabolic and attenuates catabolic and apoptotic processes 

in aged skeletal muscle of male rats. Experimental Gerontology. In press  

134. Li M, Li C, Parkhouse WS. (2003) Age-related differences in the des IGF-I-mediated 

activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mechanisms of Ageing 

and Development. 124(7): 771-778. 

135. Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha-Hikim I. (2010) Testosterone 

supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun 

NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology. 151(2): 

628-38. 

136. Blackman MR. (2002) Growth Hormone and Sex Steroid Administration in Healthy 

Aged Women and Men. Jama. 288(18): 2282. 

137. Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. (2008) 

Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. 

Growth Horm IGF Res. 18(6): 455-71. 

138. Sorensen MB, Rosenfalck AM, Hojgaard L, Ottesen B. (2001) Obesity and 

sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes 

Res. 9(10): 622-6. 

139. Chen Z, Bassford T, Green SB, Cauley JA, Jackson RD, LaCroix AZ, Leboff M, 

Stefanick ML, Margolis KL. (2005) Postmenopausal hormone therapy and body 

composition--a substudy of the estrogen plus progestin trial of the Women's Health 

Initiative. Am J Clin Nutr. 82(3): 651-6. 

140. Scicchitano BM, Rizzuto E, Musaro A. (2009) Counteracting muscle wasting in aging 

and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY). 1(5): 451-

7. 



110 
 

141. Machida S, Booth FW. (2004) Insulin-like growth factor 1 and muscle growth: 

implication for satellite cell proliferation. Proc Nutr Soc. 63(2): 337-40. 

142. Rinaldi C, Bott LC, Chen KL, Harmison GG, Katsuno M, Sobue G, Pennuto M, 

Fischbeck KH. (2012) Insulinlike growth factor (IGF)-1 administration ameliorates 

disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol 

Med. 18: 1261-8. 

143. Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, 

Kjaer M. (2007) Short-term strength training and the expression of myostatin and 

IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction 

types. J Appl Physiol (1985). 102(2): 573-81. 

144. Urso ML, Fiatarone Singh MA, Ding W, Evans WJ, Cosmas AC, Manfredi TG. 

(2005) Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in 

frail elders. Age (Dordr). 27(2): 117-25. 

145. Chang H-C. (2010) Effects of Insulin-Like Growth Factor 1 on Muscle Atrophy and 

Motor Function in Rats with Brain Ischemia. The Chinese Journal of Physiology. 

53(5): 337-348. 

146. Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC. (2010) 

Pretreatment with insulin-like growth factor I protects skeletal muscle cells against 

oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. Lab Invest. 90(3): 

391-401. 

147. Cleveland BM, Weber GM. (2010) Effects of insulin-like growth factor-I, insulin, and 

leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary 

myocytes. Am J Physiol Regul Integr Comp Physiol. 298(2): R341-50. 

148. McMahon CD, Chai R, Radley-Crabb HG, Watson T, Matthews KG, Sheard PW, 

Soffe Z, Grounds MD, Shavlakadze T. (2014) Lifelong exercise and locally produced 

insulin-like growth factor-1 (IGF-1) have a modest influence on reducing age-related 

muscle wasting in mice. Scand J Med Sci Sports. 24(6): e423-435. 

149. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. (2002) Prevalence of Sarcopenia and 

Predictors of Skeletal Muscle Mass in Healthy, Older Men and Women. The Journals 

of Gerontology Series A: Biological Sciences and Medical Sciences. 57(12): M772-

M777. 

150. Hopp JF. (1993) Effects of Age and Resistance Training on Skeletal-Muscle - a 

Review. Physical Therapy. 73(6): 361-373. 



111 
 

151. Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, Goto S. (2004) Age-

associated increase in oxidative stress and nuclear factor kappaB activation are 

attenuated in rat liver by regular exercise. FASEB J. 18(6): 749-50. 

152. Hart N, Sarga L, Csende Z, Koch LG, Britton SL, Davies KJ, Radak Z. (2014) 

Resveratrol attenuates exercise-induced adaptive responses in rats selectively bred for 

low running performance. Dose Response. 12(1): 57-71. 

153. Kalista S, Schakman O, Gilson H, Lause P, Demeulder B, Bertrand L, Pende M, 

Thissen JP. (2012) The type 1 insulin-like growth factor receptor (IGF-IR) pathway is 

mandatory for the follistatin-induced skeletal muscle hypertrophy. Endocrinology. 

153(1): 241-53. 

154. White TA, LeBrasseur NK. (2014) Myostatin and sarcopenia: opportunities and 

challenges - a mini-review. Gerontology. 60(4): 289-93. 

155. Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. (2008) Cooperative control 

of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 27(2): 

350-60. 

156. Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC. (2014) Maintenance of muscle 

mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging 

Cell. 13(1): 92-101. 

157. Joseph AM, Adhihetty PJ, Wawrzyniak NR, Wohlgemuth SE, Picca A, Kujoth GC, 

Prolla TA, Leeuwenburgh C. (2013) Dysregulation of mitochondrial quality control 

processes contribute to sarcopenia in a mouse model of premature aging. PLoS One. 

8(7): e69327. 

158. Schwarzkopf M, Coletti D, Marazzi G, Sassoon D. (2008) Chronic p53 activity leads 

to skeletal muscle atrophy and muscle stem cell perturbation Basic Applied Myology. 

18(5): 131-138. 

159. Li F-H, Liu Y-Y, Qin F, Luo Q, Yang H-P, Zhang Q-G, Liu TC-Y. (2014) 

Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1αAxis mRNA 

Expression Levels of Aging Rat Skeletal Muscle. International Journal of 

Photoenergy. 2014: 1-8. 

160. Torma F, Koltai E, Nagy E, Ziaaldini MM, Posa A, Koch LG, Britton SL, Boldogh I, 

Radak Z. (2014) Exercise Increases Markers of Spermatogenesis in Rats Selectively 

Bred for Low Running Capacity. PLoS One. 9(12): e114075. 

161. Siparsky PN, Kirkendall DT, Garrett WE, Jr. (2014) Muscle changes in aging: 

understanding sarcopenia. Sports Health. 6(1): 36-40. 



112 
 

162. Barns M, Gondro C, Tellam RL, Radley-Crabb HG, Grounds MD, Shavlakadze T. 

(2014) Molecular analyses provide insight into mechanisms underlying sarcopenia 

and myofibre denervation in old skeletal muscles of mice. Int J Biochem Cell Biol. 

53: 174-85. 

163. Liu H, Li X, Sun L, Wang H, Zhang R, Yang C, Li L, Wang J, He H, Krumm C. 

(2014) Effects of the regulation of follistatin mRNA expression by IGF-1 in duck 

(Anas platyrhynchos) skeletal muscle. Growth Horm IGF Res. 24(1): 35-41. 

164. Benbassat CA, Maki KC, Unterman TG. (1997) Circulating levels of insulin-like 

growth factor (IGF) binding protein-1 and -3 in aging men: relationships to insulin, 

glucose, IGF, and dehydroepiandrosterone sulfate levels and anthropometric 

measures. J Clin Endocrinol Metab. 82(5): 1484-91. 

165. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. (2006) Efficacy of 

myonuclear addition may explain differential myofiber growth among resistance-

trained young and older men and women. Am J Physiol Endocrinol Metab. 291(5): 

E937-46. 

166. van den Beld A, Blum W, Pols H, Grobbee D, Lamberts S. (2003) Serum insulin-like 

growth factor binding protein-2 levels as an indicator of functional ability in elderly 

men. European Journal of Endocrinology. 148(6): 627-634. 

167. Amin S, Riggs BL, Atkinson EJ, Oberg AL, Melton LJ, 3rd, Khosla S. (2004) A 

potentially deleterious role of IGFBP-2 on bone density in aging men and women. J 

Bone Miner Res. 19(7): 1075-83. 

168. Spangenburg EE, Abraha T, Childs TE, Pattison JS, Booth FW. (2003) Skeletal 

muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load 

dependent. Am J Physiol Endocrinol Metab. 284(2): E340-50. 

169. Ullman M, Ullman A, Sommerland H, Skottner A, Oldfors A. (1990) Effects of 

growth hormone on muscle regeneration and IGF-I concentration in old rats. Acta 

Physiol Scand. 140(4): 521-5. 

170. Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, Chen JL, 

Allen JM, Lancaster GI, Febbraio MA, Harrison CA, McMullen JR, Chamberlain JS, 

Gregorevic P. (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by 

Smad3 and mTOR independently of myostatin. J Cell Biol. 197(7): 997-1008. 

171. Hamrick M, Bowser M, Fulzele S, Ahsan S, Arounleut P, Isales CM. (2012) Changes 

in the activin A-myostatin-follistatin system within bone and muscle of aging mice. 

Faseb Journal. 26. 



113 
 

172. Paturi S, Gutta AK, Katta A, Kakarla SK, Arvapalli RK, Gadde MK, Nalabotu SK, 

Rice KM, Wu M, Blough E. (2010) Effects of aging and gender on muscle mass and 

regulation of Akt-mTOR-p70s6k related signaling in the F344BN rat model. Mech 

Ageing Dev. 131(3): 202-9. 

173. Flati V, Caliaro F, Speca S, Corsetti G, Cardile A, Nisoli E, Bottinelli R, G DA. 

(2010) Essential amino acids improve insulin activation of AKT/MTOR signaling in 

soleus muscle of aged rats. Int J Immunopathol Pharmacol. 23(1): 81-9. 

174. Mouisel E, Vignaud A, Hourde C, Butler-Browne G, Ferry A. (2010) Muscle 

weakness and atrophy are associated with decreased regenerative capacity and 

changes in mTOR signaling in skeletal muscles of venerable (18-24-month-old) 

dystrophic mdx mice. Muscle Nerve. 41(6): 809-18. 

175. Walker DK, Dickinson JM, Timmerman KL, Drummond MJ, Reidy PT, Fry CS, 

Gundermann DM, Rasmussen BB. (2011) Exercise, amino acids, and aging in the 

control of human muscle protein synthesis. Med Sci Sports Exerc. 43(12): 2249-58. 

176. Patterson MF, Stephenson GM, Stephenson DG. (2006) Denervation produces 

different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat. 

Am J Physiol Cell Physiol. 291(3): C518-28. 

177. Haddad F, Adams GR. (2006) Aging-sensitive cellular and molecular mechanisms 

associated with skeletal muscle hypertrophy. J Appl Physiol (1985). 100(4): 1188-

203. 

178. W.S. Geisler H. (2013) MAPK Pathway in Skeletal Muscle Diseases. Journal of 

Veterinary Science and Animal Husbandry. 1(1). 

179. Williamson D, Gallagher P, Harber M, Hollon C, Trappe S. (2003) Mitogen-activated 

protein kinase (MAPK) pathway activation: effects of age and acute exercise on 

human skeletal muscle. J Physiol. 547(Pt 3): 977-87. 

180. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G. (2012) Myostatin 

is associated with age-related human muscle stem cell dysfunction. FASEB J. 26(6): 

2509-21. 

181. Dalbo VJ, Roberts MD, Sunderland KL, Poole CN, Stout JR, Beck TW, Bemben M, 

Kerksick CM. (2011) Acute loading and aging effects on myostatin pathway 

biomarkers in human skeletal muscle after three sequential bouts of resistance 

exercise. J Gerontol A Biol Sci Med Sci. 66(8): 855-65. 



114 
 

182. Rahnert JA, Luo Q, Balog EM, Sokoloff AJ, Burkholder TJ. (2011) Changes in 

growth-related kinases in head, neck and limb muscles with age. Exp Gerontol. 46(4): 

282-91. 

183. Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, 

Goldberg AL, Ulfhake B. (2010) Muscle wasting in aged, sarcopenic rats is 

associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem. 

285(51): 39597-608. 

184. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B. (2006) 

Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat 

Tibialis Anterior muscle. Mech Ageing Dev. 127(10): 794-801. 

185. Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R, 

Bezprozvannaya S, de Windt L, Richardson JA, Bassel-Duby R, Olson EN. (2007) 

Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after 

myocardial infarction. Proc Natl Acad Sci U S A. 104(11): 4377-82. 

186. Welle S, Bhatt K, Shah B, Thornton CA. (2002) Insulin-like growth factor-1 and 

myostatin mRNA expression in muscle: comparison between 62–77 and 21–31yr old 

men. Experimental Gerontology. 37(6): 833-839. 

187. Kim JS, Cross JM, Bamman MM. (2005) Impact of resistance loading on myostatin 

expression and cell cycle regulation in young and older men and women. Am J 

Physiol Endocrinol Metab. 288(6): E1110-9. 

188. Jensky NE, Sims JK, Rice JC, Dreyer HC, Schroeder ET. (2007) The influence of 

eccentric exercise on mRNA expression of skeletal muscle regulators. Eur J Appl 

Physiol. 101(4): 473-80. 

189. Narasimhan M, Hong J, Atieno N, Muthusamy VR, Davidson CJ, Abu-Rmaileh N, 

Richardson RS, Gomes AV, Hoidal JR, Rajasekaran NS. (2014) Nrf2 deficiency 

promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle 

cells. Free Radic Biol Med. 71: 402-14. 

190. Pugh TD, Conklin MW, Evans TD, Polewski MA, Barbian HJ, Pass R, Anderson BD, 

Colman RJ, Eliceiri KW, Keely PJ, Weindruch R, Beasley TM, Anderson RM. (2013) 

A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. 

Aging Cell. 12(4): 672-81. 

191. Sczelecki S, Besse-Patin A, Abboud A, Kleiner S, Laznik-Bogoslavski D, Wrann CD, 

Ruas JL, Haibe-Kains B, Estall JL. (2014) Loss of Pgc-1alpha expression in aging 



115 
 

mouse muscle potentiates glucose intolerance and systemic inflammation. Am J 

Physiol Endocrinol Metab. 306(2): E157-67. 

192. Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJ, Radak Z. (2012) Age-

associated declines in mitochondrial biogenesis and protein quality control factors are 

minimized by exercise training. Am J Physiol Regul Integr Comp Physiol. 303(2): 

R127-34. 

193. Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, 

Tsuruoka M, Wang Y, Liu Y, Luo H, Xu Z, Mori M, Kitano M, Hosoe K, Takeda T, 

Usami S, Higuchi K. (2014) Ubiquinol-10 supplementation activates mitochondria 

functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox 

Signal. 20(16): 2606-20. 

194. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, 

Chan DC, Gupta MP. (2014) SIRT3 deacetylates and activates OPA1 to regulate 

mitochondrial dynamics during stress. Mol Cell Biol. 34(5): 807-19. 

195. Joseph AM, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM, 

Aranda JM, Sandesara BD, Pahor M, Manini TM, Marzetti E, Leeuwenburgh C. 

(2012) The impact of aging on mitochondrial function and biogenesis pathways in 

skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging 

Cell. 11(5): 801-9. 

196. Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos, II, Terzis G, 

Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Kumagai S, Naito H, Boldogh I. 

(2011) Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are 

modulated by adaptive responses to physical exercise in human skeletal muscle. Free 

Radic Biol Med. 51(2): 417-23. 

197. Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, Zhou T, Kong W. (2014) Age-related 

decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with 

ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One. 

9(2): e88019. 

198. Kincaid B, Bossy-Wetzel E. (2013) Forever young: SIRT3 a shield against 

mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 5: 48. 

199. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair 

KS. (2005) Decline in skeletal muscle mitochondrial function with aging in humans. 

Proc Natl Acad Sci U S A. 102(15): 5618-23. 



116 
 

200. Kontani Y, Wang Z, Furuyama T, Sato Y, Mori N, Yamashita H. (2002) Effects of 

aging and denervation on the expression of uncoupling proteins in slow- and fast-

twitch muscles of rats. J Biochem. 132(2): 309-15. 

201. Ljubicic V, Joseph AM, Adhihetty PJ, Huang JH, Saleem A, Uguccioni G, Hood DA. 

(2009) Molecular basis for an attenuated mitochondrial adaptive plasticity in aged 

skeletal muscle. Aging (Albany NY). 1(9): 818-30. 

202. Virbasius JV, Virbasius CA, Scarpulla RC. (1993) Identity of GABP with NRF-2, a 

multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an 

ETS domain activator of viral promoters. Genes & Development. 7(3): 380-392. 

203. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. (2010) The role of p53 in apoptosis. 

Discov Med. 9(45): 145-52. 

204. Shen Y, White E. (2001) p53-dependent apoptosis pathways. Adv Cancer Res. 

82(82): 55-84. 

205. Benchimo S. (2001) p53-dependent pathways of apoptosis. Cell Death and 

Differentiation. 8: 1049 -1051. 

206. Liu B, Chen Y, St Clair DK. (2008) ROS and p53: a versatile partnership. Free Radic 

Biol Med. 44(8): 1529-35. 

207. Pistilli EE, Siu PM, Alway SE. (2006) Molecular regulation of apoptosis in fast 

plantaris muscles of aged rats. J Gerontol A Biol Sci Med Sci. 61(3): 245-55. 

208. Alway SE, Degens H, Krishnamurthy G, Smith CA. (2002) Potential role for Id 

myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged 

rats. Am J Physiol Cell Physiol. 283(1): C66-76. 

209. Siu PM, Alway SE. (2005) Mitochondria-associated apoptotic signalling in 

denervated rat skeletal muscle. J Physiol. 565(Pt 1): 309-23. 

210. Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C. 

(2008) Age-related activation of mitochondrial caspase-independent apoptotic 

signaling in rat gastrocnemius muscle. Mech Ageing Dev. 129(9): 542-9. 

211. Ades PA, Ballor DL, Ashikaga T, Utton JL, Nair KS. (1996) Weight training 

improves walking endurance in healthy elderly persons. Ann Intern Med. 124(6): 568-

72. 

212. Vincent KR, Braith RW, Feldman RA, Magyari PM, Cutler RB, Persin SA, Lennon 

SL, Md AHG, Lowenthal DT. (2002) Resistance Exercise and Physical Performance 

in Adults Aged 60 to 83. Journal of the American Geriatrics Society. 50(6): 1100-

1107. 



117 
 

213. Martel GF, Roth SM, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE, Metter EJ, 

Hurley BF, Rogers MA. (2006) Age and sex affect human muscle fibre adaptations to 

heavy-resistance strength training. Exp Physiol. 91(2): 457-64. 

214. Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. (2006) Efficacy of 3 

days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in 

young vs. older adults. J Appl Physiol (1985). 101(2): 531-44. 

215. Bamman MM, Hill VJ, Adams GR, Haddad F, Wetzstein CJ, Gower BA, Ahmed A, 

Hunter GR. (2003) Gender Differences in Resistance-Training-Induced Myofiber 

Hypertrophy Among Older Adults. The Journals of Gerontology Series A: Biological 

Sciences and Medical Sciences. 58(2): B108-B116. 

216. Ogawa K, Sanada K, Machida S, Okutsu M, Suzuki K. (2010) Resistance exercise 

training-induced muscle hypertrophy was associated with reduction of inflammatory 

markers in elderly women. Mediators Inflamm. 2010: 171023. 

217. Vaczi M, Nagy SA, Koszegi T, Ambrus M, Bogner P, Perlaki G, Orsi G, Toth K, 

Hortobagyi T. (2014) Mechanical, hormonal, and hypertrophic adaptations to 

10weeks of eccentric and stretch-shortening cycle exercise training in old males. Exp 

Gerontol. 58: 69-77. 

218. Farup J, Kjolhede T, Sorensen H, Dalgas U, Moller AB, Vestergaard PF, Ringgaard 

S, Bojsen-Moller J, Vissing K. (2012) Muscle morphological and strength adaptations 

to endurance vs. resistance training. J Strength Cond Res. 26(2): 398-407. 

219. Lovell D.I, Cuneo R, Gass G.C. (2010) Can aerobic training improve muscle strength 

and power in older men? J Aging Phys Act. 18(1): 14-26. 

220. Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, 

Trappe S. (2009) Aerobic exercise training improves whole muscle and single 

myofiber size and function in older women. Am J Physiol Regul Integr Comp 

Physiol. 297(5): R1452-9. 

221. zquierdo M, Ibañez J, HAkkinen K, Kraemer WJ, Larrión JL, Gorostiaga EM. (2004) 

Once Weekly Combined Resistance and Cardiovascular Training in Healthy Older 

Men. Medicine & Science in Sports & Exercise. 36(3): 435-443. 

222. Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS. (2004) Age and aerobic 

exercise training effects on whole body and muscle protein metabolism. Am J Physiol 

Endocrinol Metab. 286(1): E92-101. 



118 
 

223. Sipila S, Suominen H. (1995) Effects of strength and endurance training on thigh and 

leg muscle mass and composition in elderly women. J Appl Physiol (1985). 78(1): 

334-40. 

224. Konopka AR, Trappe TA, Jemiolo B, Trappe SW, Harber MP. (2011) Myosin heavy 

chain plasticity in aging skeletal muscle with aerobic exercise training. J Gerontol A 

Biol Sci Med Sci. 66(8): 835-41. 

225. Manetta J, Brun JF, Fedou C, Maı̈moun L, Prefaut C, Mercier J. (2003) Serum levels 

of insulin-like growth factor-I (IGF-I), and IGF-binding proteins-1 and -3 in middle-

aged and young athletes versus sedentary men: relationship with glucose disposal. 

Metabolism. 52(7): 821-826. 

226. Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. (2010) 

Myostatin decreases with aerobic exercise and associates with insulin resistance. Med 

Sci Sports Exerc. 42(11): 2023-9. 

227. Ko IG, Jeong JW, Kim YH, Jee YS, Kim SE, Kim SH, Jin JJ, Kim CJ, Chung KJ. 

(2014) Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a 

possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and 

urethral rhabdosphincter. Int Neurourol J. 18(2): 77-85. 

228. Atherton PJ, Higginson JM, Singh J, Wackerhage H. (2004) Concentrations of signal 

transduction proteins exercise and insulin responses in rat extensor digitorum longus 

and soleus muscles. Mol Cell Biochem. 261(1-2): 111-6. 

229. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. (2009) Increased 

muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during 

aging. Proc Natl Acad Sci U S A. 106(48): 20405-10. 

230. Liang H, Ward WF. (2006) PGC-1alpha: a key regulator of energy metabolism. Adv 

Physiol Educ. 30(4): 145-51. 

231. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, 

Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. (2002) Transcriptional co-

activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 

418(6899): 797-801. 

232. Miller CJ, Gounder SS, Kannan S, Goutam K, Muthusamy VR, Firpo MA, Symons 

JD, Paine R, 3rd, Hoidal JR, Rajasekaran NS. (2012) Disruption of Nrf2/ARE 

signaling impairs antioxidant mechanisms and promotes cell degradation pathways in 

aged skeletal muscle. Biochim Biophys Acta. 1822(6): 1038-50. 



119 
 

233. Palacios; O.M, Carmona; J.J, Michan; S, Chen; K.Y, Manabe; Y, Ward III; J.K, 

Goodyear; L.J, Q. T. (2009) Diet and exercise signals regulate SIRT3 and activate 

AMPK and PGC-1α in skeletal muscle. AGING. 1(9): 771-783. 

234. Johnson ML, Irving BA, Lanza IR, Vendelbo MH, Konopka AR, Robinson MM, 

Henderson GC, Klaus KA, Morse DM, Heppelmann C, Bergen HR, 3rd, Dasari S, 

Schimke JM, Jakaitis DR, Nair KS. (2014) Differential Effect of Endurance Training 

on Mitochondrial Protein Damage, Degradation, and Acetylation in the Context of 

Aging. J Gerontol A Biol Sci Med Sci. 

235. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, 

Nair KS. (2008) Endurance exercise as a countermeasure for aging. Diabetes. 57(11): 

2933-42. 

236. Huang Y, Gounder SS, Kannan S, Devadoss D, Miller CJ, Whitehead KS, Odelberg 

SJ, Firpo MA, Paine R, Hoidal JR, Abel ED, Rajasekaran NS. (2013) Correction: 

Impaired Transcriptional Activity of Nrf2 in Age-Related Myocardial Oxidative 

Stress Is Reversible by Moderate Exercise Training. PLoS ONE. 8(6). 

237. Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C. (2008) 

Modulation of age-induced apoptotic signaling and cellular remodeling by exercise 

and calorie restriction in skeletal muscle. Free Radic Biol Med. 44(2): 160-8. 

238. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. (2005) 

Nutrient control of glucose homeostasis through a complex of PGC-1alpha and 

SIRT1. Nature. 434(7029): 113-8. 

239. Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. (2009) SIRT1 

controls the transcription of the peroxisome proliferator-activated receptor-gamma 

Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha 

autoregulatory loop and interaction with MyoD. J Biol Chem. 284(33): 21872-80. 

240. Nemoto S, Fergusson MM, Finkel T. (2005) SIRT1 functionally interacts with the 

metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 

280(16): 16456-60. 

241. Anderson RM, Barger JL, Edwards MG, Braun KH, O'Connor CE, Prolla TA, 

Weindruch R. (2008) Dynamic regulation of PGC-1alpha localization and turnover 

implicates mitochondrial adaptation in calorie restriction and the stress response. 

Aging Cell. 7(1): 101-11. 



120 
 

242. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. 

(2008) Glucose restriction inhibits skeletal myoblast differentiation by activating 

SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 14(5): 661-73. 

243. Benton CR, Nickerson JG, Lally J, Han XX, Holloway GP, Glatz JF, Luiken JJ, 

Graham TE, Heikkila JJ, Bonen A. (2008) Modest PGC-1alpha overexpression in 

muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in 

subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem. 283(7): 4228-40. 

244. Andersen NB, Andreassen TT, Orskov H, Oxlund H. (2000) Growth hormone and 

mild exercise in combination increases markedly muscle mass and tetanic tension in 

old rats. Eur J Endocrinol. 143(3): 409-18. 

245. Hou CW, Chou SW, Ho HY, Lee WC, Lin CH, Kuo CH. (2003) Interactive effect of 

exercise training and growth hormone administration on glucose tolerance and muscle 

GLUT4 protein expression in rats. J Biomed Sci. 10(6 Pt 2): 689-96. 

246. Pittaluga M, Sgadari A, Tavazzi B, Fantini C, Sabatini S, Ceci R, Amorini AM, Parisi 

P, Caporossi D. (2013) Exercise-induced oxidative stress in elderly subjects: the 

effect of red orange supplementation on the biochemical and cellular response to a 

single bout of intense physical activity. Free Radic Res. 47(3): 202-11. 

247. Mendes C, Lopes AM, do Amaral FG, Peliciari-Garcia RA, Turati Ade O, Hirabara 

SM, Scialfa Falcao JH, Cipolla-Neto J. (2013) Adaptations of the aging animal to 

exercise: role of daily supplementation with melatonin. J Pineal Res. 55(3): 229-39. 

248. Olesen J, Ringholm S, Nielsen MM, Brandt CT, Pedersen JT, Halling JF, Goodyear 

LJ, Pilegaard H. (2013) Role of PGC-1alpha in exercise training- and resveratrol-

induced prevention of age-associated inflammation. Exp Gerontol. 48(11): 1274-84. 

249. Guo Q, Minami N, Mori N, Nagasaka M, Ito O, Kurosawa H, Kanazawa M, Kohzuki 

M. (2010) Effects of estradiol, angiotensin-converting enzyme inhibitor and exercise 

training on exercise capacity and skeletal muscle in old female rats. Clin Exp 

Hypertens. 32(2): 76-83. 

250. Kim JH, Kwak HB, Leeuwenburgh C, Lawler JM. (2008) Lifelong exercise and mild 

(8%) caloric restriction attenuate age-induced alterations in plantaris muscle 

morphology, oxidative stress and IGF-1 in the Fischer-344 rat. Exp Gerontol. 43(4): 

317-29. 

251. Kadota J, Mizunoe S, Mukae H, Mito K, Kishi K, Tokimatsu I, Nagai H, Tomono K, 

Kohno S, Nasu M. (2006) The expression of pro- and anti-apoptotic Bcl-2 family 



121 
 

proteins in peribronchiolar lymphocytes from patients with diffuse panbronchiolitis. 

Respir Med. 100(11): 2029-36. 

252. Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Fernandez C, Cacicedo L. 

(2004) IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-

kinase/Akt pathway in pituitary cells. Journal of Molecular Endocrinology. 33(1): 

155-163. 

253. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, 

Baserga R. (1999) Multiple signaling pathways of the insulin-like growth factor 1 

receptor in protection from apoptosis. Mol Cell Biol. 19(10): 7203-15. 

254. Barbour JA, Turner N. (2014) Mitochondrial stress signaling promotes cellular 

adaptations. Int J Cell Biol. 2014: 156020. 

255. Nguyen T, Nioi P, Pickett CB. (2009) The Nrf2-antioxidant response element 

signaling pathway and its activation by oxidative stress. J Biol Chem. 284(20): 13291-

5. 

256. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, 

Kahn CR. (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin 

signaling via altered mitochondrial oxidation and reactive oxygen species production. 

Proc Natl Acad Sci U S A. 108(35): 14608-13. 

257. Missios P, Zhou Y, Guachalla LM, von Figura G, Wegner A, Chakkarappan SR, Binz 

T, Gompf A, Hartleben G, Burkhalter MD, Wulff V, Gunes C, Sattler RW, Song Z, 

Illig T, Klaus S, Bohm BO, Wenz T, Hiller K, Rudolph KL. (2014) Glucose 

substitution prolongs maintenance of energy homeostasis and lifespan of telomere 

dysfunctional mice. Nat Commun. 5: 4924. 

  



122 
 

9. Bibliography of the author’s publications  

 

  

9.1. Publications related to this study 

 

Mosaferi Ziaaldini M, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW, Radak Z. (2015) 

Exercise training increases anabolic and attenuate catabolic and apoptotic processes in aged 

skeletal muscle of male rats. Experimental Gerontology. In press. (Impact Factor: 3.529) 

 

Torma F, Koltai E, Nagy E, Ziaaldini MM, Posa A, Koch LG, Britton SL, Boldogh I, Radak 

Z. (2014) Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low 

Running Capacity. PLoS One. 9(12): e114075. (Impact Factor: 3.53) 

 



123 
 

10. Acknowledgements 
 

I would like to take this opportunity to express my gratitude to those people without whom 

completion of this study would not have been possible. 

 I would like to express my sincere gratitude to my supervisor Prof. Dr. Radak Zsolt for the 

continuous support of my Ph.D. study and research, for his patience, motivation, enthusiasm, 

and immense knowledge. His guidance helped me in all the time of research and writing of 

this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study. 

I thank with love to Zahra and Zeinab, my wife and daughter. Understanding me best as a 

Ph.D. student, Zahra has been my best friend and great companion, loved, supported, 

encouraged, entertained, and helped me get through this agonizing period in the most positive 

way. 

I deeply thank my parents, Gholamreza and Masha Allah for their unconditional trust, timely 

encouragement, and endless patience. It was their love that raised me up again when I got 

weary. My brothers and sisters, Mahdi, Hussain, Hassan, Hadi, Ali, Fatimah and Marziyeh, 

have also been generous with their love and encouragement despite the long distance between 

us. 

I would like to express my gratitude to my wife's parents, Fatimah and Ali for their unfailing 

emotional support. I also thank for heart-warming kindness from the family of my Wife: 

Mahmoud and Mustafa and their wives. 

There is no way to express how much it meant to me to have been a member of laboratory of 

research institute of sport science. These brilliant friends and colleagues inspired me over 

these years: Dr. Erika Koltai, Zoltan Bori, Dr. Judit Encsne Molnar, Ferenc Torma, Orsolya 

Marton, Nikolett Hart, Melitta Pajk, Dora Abraham and all the other current and former 

students and visitors that I know. 

And also acknowledgments of the ministry of science, research and technology of the Islamic 

republic of Iran for their material and spiritual supports to me during these years. 

First and foremost, praises and thanks to the God, the Almighty, for His showers of 

blessings throughout my life and research work to complete the research successfully. 




